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Abstract
Diffractive neural networks (NNs) have garnered attention
for directly implementing wireless signal processing at the
physical layer. However, they are limited by a constrained
weight learning space and activation functions, which restricts
their data processing capabilities. To address this, we propose
an RF circuit-based weighted diffraction NN (WDNN) that
rivals digital NNs in processing ability. We design a weighted
asymmetric RF coupler unit that, when stacked into a net-
work, enables diffractive propagation with arbitrary connec-
tion weights. Additionally, an activation module is introduced
that utilizes RF amplifiers operating in their nonlinear regions.
We validate the effectiveness of the proposed WDNN through
three tasks: 32-level amplitude modulated (AM) signal decod-
ing, 31-class angle of arrival (AoA) estimation, and 2-class
Wi-Fi based fall detection. After training, WDNN achieves
the accuracy of 98.5%, 93.7%, and 90.8% in the AM decod-
ing, AoA estimation, and fall detection tasks, respectively;
while the diffractive NN SOTA achieves only 21.6%, 16.9%,
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and 63.3%. We also implement the prototypes of WDNN and
SOTA, and real-world experimental results demonstrate that
our method achieves an average accuracy improvement of up
to 76.85% across various tasks compared to SOTA.
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1 Introduction
In wireless systems, direct signal processing in the analog
domain attains widespread attention due to its inherent ad-
vantages. Recent studies have enhanced feature extraction in
wireless signals at the physical layer. Minimalist vision [22]
introduces a 3D-printed cover as a physical feature extraction
layer for computer vision, enabling lightweight tasks such as
head detection and traffic monitoring with an 8-pixel CMOS
sensor. In acoustics, specially designed 3D-printed structures
improve imaging[1, 10] and communication [49]. In the ra-
dio frequency (RF) domain, optimized metasurfaces enhance
communication coverage, data rate [9, 24, 25, 30, 35], and
indoor localization [42]. These approaches extract or enhance
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features at the physical layer, reducing the burden of digital
data processing and improving wireless system performance.

Moving beyond traditional physical-layer feature extrac-
tion techniques, recent research has introduced diffractive
deep neural networks (D2NN [27]), which achieve neural
network computations within the physical domain. D2NN
leverages multi-layer metasurfaces to diffract signals, with
each meta-atom functioning analogously to a neuron in a
digital neural network. This approach fundamentally shifts
signal manipulation from digital computation towards analog
processing, showcasing a pathway to ultra-fast and energy-
efficient inference. However, D2NN requires sophisticated
and precise inter-layer alignment, along with complex cali-
bration procedures, which renders practical implementation
challenging. In response to these limitations, planar diffrac-
tive neural networks (pla-NN [15]) have emerged, utilizing
analog circuits to perform signal processing. By shifting the
diffraction operation from wireless channels to wired circuits,
pla-NN aims to simplify the overall architecture and improve
system stability and scalability.

However, existing state-of-the-art (SOTA) diffraction-based
hardware NN models are limited to relatively simple data pro-
cessing tasks. For example, [15] can only achieve 4-label clas-
sification of angle of arrival (AoA) and objects in the 10 GHz
band. Meanwhile, [12, 27] demonstrate digit recognition in
the optical and terahertz bands. The limited computational
capabilities of SOTA diffractive NNs are mainly due to two
factors: (1) fixed or minimally adjustable propagation weights,
which hinder effective weight learning through backpropaga-
tion; and (2) the absence of nonlinear activation modules. As
a result, these methods are restricted to basic linear function
fitting, in contrast to the nonlinear capabilities of digital NNs.

In this study, we propose a weighted diffractive NN (named
WDNN) for processing RF signals at the physical layer, aim-
ing to approximate the powerful nonlinear function fitting
capabilities of digital NNs. To achieve this, we employ an
analog circuit-based approach to design WDNN, addressing
the SOTA’s limitations as follows: (i) we develop a novel
diffractive propagation module with fully adjustable weights,
enhancing the learnability of propagation weights; (ii) we
integrate nonlinear modules to facilitate activation functions.

To achieve the arbitrarily adjustable diffractive propagation
weights, we conduct an in-depth analysis of RF coupler de-
signs and the overall propagation characteristics of networks
composed of them. Based on these insights, we design a novel
RF coupler that supports asymmetric propagation with flexi-
ble and learnable weights. By carefully arranging multiple RF
couplers as a propagation network, we can realize an efficient
propagation module for connecting two layers with arbitrary
weights. Additionally, we use RF attenuators and phase delay
lines at each output port of the RF coupler network to repre-
sent bias vectors in NNs. To implement nonlinear activation

functions, we utilize RF amplifiers as nonlinear modules. By
carefully adjusting supply voltages beyond typical ranges, we
ensure they operate in the cutoff regions to achieve the desired
nonlinear characteristics. In Sec. 3, we provide a detailed de-
scription of the design specifics of WDNN. These designs
enable WDNN to achieve nonlinear fitting capabilities compa-
rable to digital NNs, including arbitrary propagation weight
matrices, bias vectors, and nonlinear activation functions.

To validate the advantages of WDNN in NN computation,
we design three wireless tasks: 32-level amplitude modula-
tion (AM) communication at 5 GHz, 31-class angle-of-arrival
(AoA) estimation with 4° resolution over the range of -60°
to 60° at 5 GHz, and 2-class fall detection based on Wi-Fi
signals. For each task, WDNN, pla-NN (SOTA), and digital
NN are individually trained on simulated datasets, and their
performance is subsequently compared. Simulation results
show that WDNN outperforms pla-NN by 76.1% and is only
0.2% behind the digital NN in the AM modulation task; it
exceeds pla-NN by 75.9% and is only 3.8% lower than digital
NN in the AoA estimation task; and in the WiFi-based pose
recognition task, WDNN outperforms pla-NN by 27.5% and
is just 1.9% less accurate than the digital NN. For the AM and
AoA tasks, we further implement hardware prototypes for
WDNN and pla-NN and conduct the real-world experiments.
Design parameters for the RF components in each methods
are obtained through reverse engineering and the trained net-
work weights, and both are fabricated using printed circuit
board (PCB) technology. Experimental results show that: in
the AM decoding task, WDNN achieves a raw data decod-
ing accuracy of 98.5%, significantly higher than pla-NN’s
21.6%; in the AoA estimation task, WDNN achieves a classi-
fication accuracy of 93.7% with 4° resolution, which is also
much higher than pla-NN’s 16.9%. These results demonstrate
that WDNN achieves outstanding performance in RF signal
feature extraction and processing at the physical layer.

Our contributions are summarized as follows:

• We propose a weighted diffractive neural network, called
WDNN, as the first physical-layer NN capable of RF sig-
nal processing, featuring arbitrary diffraction propagation
weights and nonlinear activation functions.

• We design an innovative RF coupler that achieves arbitrary
and asymmetric coupling weights. Leveraging this coupler,
we construct an RF coupler network that serves as a propa-
gation module, efficiently establishes connections between
layers with arbitrary weights.

• We utilize the nonlinear region of RF amplifiers to imple-
ment the nonlinear activation functions.

• We conduct extensive experiments to validate the capa-
bilities of WDNN in RF data processing at the physical
layer, showing that it significantly outperforms SOTA and
achieves performance close to digital NNs.
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(a) Multi-layer metasufaces-based D2NN (3D view and side view) (b) Diffractive propagation
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(c) Weight matrix of the diffraction zone

Figure 1: An exemplar multi-layer metasurface-based D2NN [27], where each metasurface consists of 10× 10 meta-atoms,
with each atom acting as a neuron

(a) Analog circuit-based pla-NN structure (b) RF coupler & phase shifter (c) RF power detector
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(d) Weight matrix of the RF coupler network

Figure 2: An exemplar analog circuit-based pla-NN [15], where each layer is equipped with 16 RF ports, with each port
functioning as a neuron

2 Background and Motivation
Neural networks (NNs) are powerful for signal processing. In
a NN, neurons are connected across layers through weighted
links, with each neuron having an associated bias and activa-
tion function. In each hidden layer, the output is computed by
z = Wx + b, then passed through an activation function 𝜏 to
yield a = 𝜏 (z), which serves as the layer’s output. The weights
W and biases b are learned via backpropagation, enabling
strong nonlinear fitting. This section examines the existing
analog-domain NN computation researches, outlines SOTA
methods, and analyzes their limitations.

2.1 Diffractive Neural Network
2.1.1 Metasurface-based solution. The diffractive deep
neural network (D2NN), first introduced in [27], is constructed
using multi-layer metasurfaces, as shown in Fig. 1(a). Each
metasurface layer corresponds to an NN layer: the first is the
input layer, the middle serves as hidden layers, and the last is
the output layer. Each meta-atom functions as a neuron with
a complex transmission coefficient. The term "diffractive"
derives from the Huygens-Fresnel principle [5], where each
meta-atom receives signals from the previous layer, gener-
ates near-field diffraction, and transmits secondary waves to
the next layer, as shown in Fig. 1(b). The bias of each meta-
atom can be flexibly adjusted via transmission attenuation
and phase delay. As signals traverse the metasurface layers,
they are transformed into energy-based features, which are
detected by a power detector array in the D2NN.
Limitation: The propagation weights between meta-atoms
in adjacent layers are determined by the wireless channel,
reflecting attenuation and phase delay. As shown in Fig. 1(c),
the propagation matrix 𝑾 between two 10 × 10 metasurfaces

exhibits high amplitude and phase periodicity. This is caused
by the periodic arrangement of meta-atoms in the metasurface.
Hence, metasurface-based solutions cannot flexibly adjust the
propagation matrix. Moreover, in RF scenarios, unlike in
the light frequency band [47, 50], meta-atoms struggle with
nonlinearity, resulting in the absence of activation functions.

2.1.2 Analog circuit-based solution. The planar diffrac-
tive NN (pla-NN), proposed by [15], replaces wireless chan-
nels with wired ones to implement diffraction using RF analog
circuits. As shown in Fig. 2(a), it consists of the input layer,
propagation modules, hidden layer (bias modules), and output
layer. The input layer includes multiple antennas to receive RF
signals. The propagation module uses an RF coupler network
for energy transfer to achieve inter-layer diffraction, the RF
coupler unit design [18] is shown in Fig. 2(b). These couplers
split energy from one input port (e.g., port 1) to two output
ports (e.g., ports 2 & 3), and similarly for another input port
(e.g., port 4). The hidden layer applies neuron biases through
phase delay lines. In the output layer, RF power detectors, as
shown in Fig. 2(c), are used to convert RF signal features into
voltage signals, which can then be sampled by ADC chips.

Limitations: The pla-NN shares two key limitations with
D2NN. First, its propagation network relies on -3dB RF cou-
plers that split energy evenly with equal phase delays, result-
ing in fixed, non-learnable weights W and limited amplitude
and phase transfer, as shown in Fig. 2(d) and examined in
Sec.3.1. Second, the absence of nonlinear RF modules pre-
cludes activation functions. Additionally, pla-NN uses only
phase delay lines for bias modulation, which are inadequate
for complex signals and provide a smaller learning space for
bias vectors than D2NN.
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Figure 3: Overview of the proposed WDNN
2.2 Our Tasks
Our objective is to address the limitations of current SOTA
diffractive NNs. We seek to develop an innovative solution
that demonstrates strong nonlinear fitting capabilities, com-
parable to those of digital NNs. To achieve this, we need
to implement: (1) propagation connections between two lay-
ers that allows maximal arbitrary weight adjustments, and
(2) support for nonlinear activation functions. Given these
requirements, a metasurface-based diffractive NN design is
nearly impossible, as it relies entirely on wireless channels to
determine propagation weights. Furthermore, designing non-
linear meta-atoms at RF frequencies is extremely challenging.
Therefore, in this paper, we adopt an analog circuit design
approach to develop a hardware-layer NN, which we name
the Weighted Diffractive Neural Network (WDNN).

3 WDNN Design
The architecture of WDNN is shown in Fig. 3. The input layer
uses antenna arrays. Our propagation module allows flexible
weighted diffractive propagation. The hidden layer includes a
bias module for adjustable weights and a nonlinear activation
module for nonlinear processing. At the output layer, power
detectors convert RF signals to voltage signals for ADC sam-
pling and analysis. Next, we detail the implementations of the
propagation, bias, and nonlinear activation modules, which
are the core innovations of WDNN.

3.1 Propagation Module
Connecting multiple RF ports with arbitrary propagation
weights is challenging. Although RF power dividers and com-
biners using PCB vias can achieve these connections [7],
the via capacitance degrades signal quality, and handling a
large number of ports becomes inefficient [6]. The SOTA ap-
proach, pla-NN [15], employs a stacked RF coupler network
to connect RF ports between layers. We start by analyzing
this network and modeling its propagation matrix. We then
identify it’s limitations and propose an efficient RF coupler
design for constructing adjustable propagation matrices.

3.1.1 RF coupler network modeling. A simplified dia-
gram of a standard RF coupler is shown in Fig. 4(b). In a
scattering parameter matrix (S) of the RF coupler, each ele-
ment 𝑆𝑖 𝑗 is a complex number, representing the ratio of the

output voltage wave at the 𝑖th port to the input voltage wave
at the 𝑗 th port. For a well-designed RF coupler, the scattering
matrix should exhibit almost zero reflection, implying that
𝑆41, 𝑆14, 𝑆23, 𝑆32, 𝑆11, 𝑆22, 𝑆33, 𝑆44 are almost zero. As shown
in Fig. 4(a), we focus on the propagation relationships among
the input and output vectors. To simplify the matrix expres-
sion, we omit the zeros and define the propagation matrix 𝒑
for an RF coupler as:[

𝑜𝑢𝑡1
𝑜𝑢𝑡2

]
= 𝒑

[
𝑖𝑛1
𝑖𝑛2

]
, 𝒑 =

[
𝑆21 𝑆31
𝑆24 𝑆34

]
(1)

Consider a network consisting of 𝑀 × 𝑁 of RF couplers, ar-
ranged as shown in Fig. 4(b). Odd-numbered columns contain
𝑀 couplers, while even-numbered columns have 𝑀 − 1 cou-
plers. Thus, each layer consists of 2𝑀 "neurons", making the
propagation matrix W a 2𝑀 × 2𝑀 matrix. Since RF couplers
propagate signals column by column, we analyze the network
by columns. Starting with the odd-numbered 𝑘th column, we
define the propagation matrices of each RF coupler in the odd-
numbered column are p𝑘,1, p𝑘,2, ..., p𝑘,2𝑀 , and each matrix is
of size 2× 2, then, we can derive the matrix expression for P𝑘

as follows:

P𝑘 =



p𝑘,1 02×2 02×2 · · · 02×2
02×2 p𝑘,2 02×2 · · · 02×2
02×2 02×2 p𝑘,3 · · · 02×2
...

...
...

. . .
...

02×2 02×2 · · · 02×2 p𝑘,2𝑀


(2)

Similarly, when k is even, we can obtain the matrix:

P𝑘 =



1 01×2 01×2 · · · 01×2 0
02×1 p𝑘,1 02×2 · · · 02×2 02×1
02×1 02×2 p𝑘,2 · · · 02×2 02×1
...

...
...

. . .
...

...

02×1 02×2 · · · 02×2 p𝑘,2𝑀−1 02×1
0 01×2 01×2 · · · 01×2 1


(3)

We obtain the propagation matrix for a network comprised of
the stacked RF couplers:

𝑾 = 𝑷1𝑷2...𝑷𝑵 (4)

3.1.2 Weighted Asymmetric RF Coupler. Using unequal
RF couplers is a straightforward approach to enable learn-
able weights. We explore this by employing an unequal RF
coupler [44] with two degrees of freedom to design the prop-
agation module. The detailed pattern is shown on the right
part of Fig. 5, and its propagation matrix is as follows:

𝒑𝒄𝒑 (𝑛𝑐 , 𝜃𝑐1, 𝜃𝑐2) =
[

𝑛𝑐𝑒
𝑗𝜃𝑐1 (1 − 𝑛𝑐 )𝑒 𝑗𝜃𝑐2

(1 − 𝑛𝑐 )𝑒 𝑗𝜃𝑐2 𝑛𝑐𝑒
𝑗𝜃𝑐1

]
(5)

where 𝑛𝑐 , 𝜃𝑐1, and 𝜃𝑐2 are adjustable parameters and can be
designed by the geometric parameters: 𝐿1, 𝐿2, 𝐷1, 𝐷2,𝑊1,𝑊2,
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Figure 4: (a) An entire RF coupler network functions as the propagation module between two layers and is composed of
numerous RF coupler units. (b) A simplified diagram of an RF coupler. (c) The propagation weight matrix in NNs

Figure 5: Propagation unit design with arbitrary propa-
gation coefficients

𝑆1, 𝑆2. Due to the symmetric nature and the principle of reci-
procity [33], for the existing unequal RF coupler design, there
always satisfy that 𝑆21 = 𝑆34 and 𝑆31 = 𝑆24. This results in
the existing design of unequal RF couplers producing a sym-
metric propagation matrix. Using existing designs of unequal
RF couplers to construct propagation networks encounters
limitations in learning optimal propagation weights. Thus,
we conduct experiments to verify these limitations: these
networks are unable to fit arbitrary weight matrices 𝑾 in
traditional NNs. For details, please refer to Sec. 3.1.3.

In designing a propagation module with maximal adjusta-
bility, the core challenge is to develop an RF coupler capable
of achieving arbitrary coupling coefficients, allowing indepen-
dent control of the four complex numbers in the propagation
matrix 𝒑. To achieve this, we draw inspiration from the exist-
ing unequal RF coupler designs and introduce additional RF
circuits that enables arbitrary power splitting and combining,
as well as phase modulation. The specific implementation is
illustrated in Fig. 5, which includes three sub-modules.

The first sub-module, depicted on the left in Fig. 5, com-
prises a power splitter and a power combiner. An unequal
power splitter [19, 26] first distributes the RF signal from the
input (e.g., port 2) into two branches in a tunable ratio of n:(1-
n), where 0 < 𝑛 < 1. Subsequently, we design an unequal
power combiner [26, 43] to merge a portion of the signal
from port 2 with the input port 1, enabling efficient power
combining via impedance matching based on pre-determined
power ratios. Notably, the combiner does not require the input

signals to be phase-aligned; any out-of-phase losses are dissi-
pated through resistive elements. This configuration yields the

propagation matrix: 𝑝𝑠𝑐 =

[
1 𝑛

0 1 − 𝑛

]
. In the same manner,

the signal from input port 1 can be divided in a ratio of n:(1-n)
and combined with the signal from port 2, yielding the follow-

ing propagation matrix: 𝑝𝑠𝑐 =
[

𝑛 0
1 − 𝑛 1

]
. To enable gradient

properties in the propagation matrix, facilitating optimization
via gradient descent to learn optimal parameters, we integrate
the matrices of the two modes as follows:

𝑝𝑠𝑐 (𝛽, 𝑛) =
[
𝛽𝑛 + (1 − 𝛽) (1 − 𝛽)𝑛
(1 − 𝛽) (1 − 𝑛) 𝛽 + (1 − 𝛽) (1 − 𝑛)

]
(6)

where, 𝛽 is a step function: 𝛽 (𝑥) = 1
1+𝑒−10𝑥 , n is the power

ratio of the splitter. This module is designed to break the
power symmetry of the RF coupler unit.

The second sub-module, illustrated in the middle of Fig. 5,
comprises two independent RF phase shifters inserted into
the signal paths from the previous stage to establish phase
symmetry. Letting the phase delays on the two paths be 𝜃1
and 𝜃2, the resulting propagation matrix is:

𝑝𝑝𝑑 (𝜃1, 𝜃2) =
[
𝑒 𝑗𝜃1 0
0 𝑒 𝑗𝜃2

]
(7)

The third sub-module is an unequal RF coupler, which ex-
hibits symmetry, as shown in the right part of Fig. 5. Its
propagation matrix is Eq. 5. By integrating these three sub-
modules, we create a novel RF coupler with the following
propagation matrix: 𝒑(𝛽, 𝑛, 𝜃1, 𝜃2, 𝑎𝑐 , 𝜃𝑐1, 𝜃𝑐2) = 𝒑𝒔𝒄𝒑𝒑𝒅𝒑𝒄𝒑 ,
and the detailed parameters are as:

𝑆21 = (𝛽𝑛 + 1 − 𝛽)𝑛𝑐𝑒 𝑗 (𝜃1+𝜃𝑐1 ) + (1 − 𝛽)𝑛(1 − 𝑛𝑐 )𝑒 𝑗 (𝜃2+𝜃𝑐2 )

𝑆31 = (𝛽𝑛 + 1 − 𝛽) (1 − 𝑛𝑐 )𝑒 𝑗 (𝜃1+𝜃𝑐2 ) + (1 − 𝛽)𝑛𝑛𝑐𝑒 𝑗 (𝜃2+𝜃𝑐1 )

𝑆24 = (1 − 𝛽) (1 − 𝑛)𝑛𝑐𝑒 𝑗 (𝜃1+𝜃𝑐1 )+
[𝛽 + (1 − 𝛽) (1 − 𝑛)] (1 − 𝑛𝑐 )𝑒 𝑗 (𝜃2+𝜃𝑐2 )

𝑆34 = (1 − 𝛽) (1 − 𝑛) (1 − 𝑛𝑐 )𝑒 𝑗 (𝜃1+𝜃𝑐2 )+
[𝛽 + (1 − 𝛽) (1 − 𝑛)]𝑛𝑐𝑒 𝑗 (𝜃2+𝜃𝑐1 )

(8)
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(a) M=8, N=3
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(b) M=8, N=7
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(c) M=8, N=13

Figure 6: Propagation matrices of the RF coupler network
under various setting parameters. Each RF coupler unit is
configured as an equal power splitter [18]. The propagation
weights are fixed with the specific setting parameters.
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Figure 7: Propagation matrices of the RF coupler network
under various setting parameters. Each RF coupler unit is
configured as an unequal power coupler [44]. The propaga-
tion weights are not fixed and have limited adjustability.
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Figure 8: Propagation matrix of the RF coupler network illustrating various setting parameters; each RF coupler unit is
configured as our proposed unequal asymmetric power coupler (see Fig. 5). The propagation weights are adjustable.

This approach enables independent adjustment of the four
complex numbers in the RF coupler matrix and ensures that
the proposed coupler unit exhibits near-zero reflection.

3.1.3 Propagation Performance Comparison. We con-
sider a diffractive NN with 16 input ports, and its hidden layer
also has 16 hidden RF ports, requiring approximately 8 × 𝑁

RF couplers to establish connections between layers. We first
apply the -3dB RF couplers in the propagation module, each
with transmission parameters 𝑆21 = 𝑆34 = 𝑆31 = 𝑆24 = 0.5𝑒 𝑗 𝜋2 ,
which ensure uniform energy distribution and fixed phase re-
lations. We analyze the propagation matrices for 𝑁 = 1 to 13,
as shown in Fig. 6. The resulting weight matrices display con-
sistent diffusion patterns as 𝑁 increases. However, the fixed
amplitude and phase characteristics of -3dB couplers limit
the tunability of the propagation weights, thereby inhibiting
their optimization via backpropagation in pla-NN.

Then, unequal RF couplers are employed in the propagation
module, with each coupler assigned arbitrary values for 𝑎𝑐𝑝 ,
𝜃𝑐1, and 𝜃𝑐2, thus enabling independent control over energy

and phase. We compute the propagation matrices for 𝑁 = 1 to
13, as presented in Fig. 7. The results show that as 𝑁 increases,
there are significant variations in both amplitude and phase
within the diffusion region.

Furthermore, we examine the propagation weights of a cou-
pler network built using our designed weighted asymmetric
couplers, where each coupler is defined according to Eq. 8,
allowing for arbitrary energy and phase settings. For 𝑁 rang-
ing from 1 to 13, the corresponding propagation matrices are
shown in Fig. 8. With increasing 𝑁 , both amplitude and phase
distributions of the propagation matrix exhibit greater irregu-
larity and randomness, preliminarily confirming the enhanced
tunability and effectiveness of our design.

To further demonstrate the adjustability of our weighted
asymmetric RF coupler, we construct propagation modules us-
ing various RF coupler types to fit arbitrary target weight ma-
trices 𝑾 . Specifically, we randomly generate 1000 instances
of 16 × 16 matrices 𝑾 and employ different RF coupler net-
works for fitting, with the number of input and output ports
𝑀 = 8, and 𝑁 as a tunable hyperparameter. Fig. 9(a) gives
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Figure 9: Comparison of the adaptability of propagation
weights in networks formed by different RF couplers.

(a) Bias module (b) Activation module

Figure 10: Bias and activation unit design: each mod-
ule’s left is input, right is output.

an example of the loss curve for the fitting of one instance
of 𝑊 , with 𝑁 set to 5. Fig. 9(b) shows the fitting error bar
analysis. Although Fig. 7 demonstrates that networks built
with unequal symmetric RF couplers exhibit increased diffu-
sivity in the propagation matrix as 𝑁 increases, both equal
and unequal symmetric coupler networks fail to converge
effectively. Notably, simply increasing 𝑁 does not enhance
the RF coupler network’s ability to fit an arbitrary target ma-
trix 𝑾 for either configuration. Fundamentally, symmetric
RF couplers present intrinsic limitations: from an energy ex-
change perspective, the energy from the 2𝑀 input ports of
the couplers fully propagates to the input ports of the next
column of couplers. Thus, the total energy of the previous
column is transferred to the total energy of the next column,
meaning each column sum of matrix 𝑊 is the same. After
multiplication by the symmetric block propagation matrix
P𝑘 , the resulting matrix 𝑊 maintains symmetry, leading to
equal row sums in the final matrix𝑊 . This structural property
constrains the flexibility of weight adjustment, making it im-
possible to realize arbitrary propagation matrices, regardless
of whether the symmetric RF couplers are equal or unequal.

In contrast, the propagation modules constructed with our
weighted asymmetric RF couplers demonstrate superior cov-
erage and fitting performance. The findings indicate that the
integration of power splitters, combiners, and phase shifters
into otherwise symmetric but unequal RF couplers effectively
breaks their inherent symmetry in both power distribution
and phase alignment. This structural modification enables
highly tunable propagation weights and facilitates efficient
inter-layer connectivity within the diffractive NN.

3.2 Bias Module
We implement a bias module via RF circuits that allow arbi-
trary weight adjustment. The current SOTA, pla-NN, achieves
b solely through phase delay lines (see Fig. 1(a)), which
presents significant limitations. Since the b vector is a com-
plex vector, its elements comprise not only phase delay but
also attenuation. Therefore, we incorporate an RF attenua-
tor [23] with phase delay functionality to achieve the complex-
valued bias, 𝐴𝑏𝑒

𝑗𝜃𝑏 , for each RF neuron. The detailed design
is shown in Fig. 10(a). It is important to note that the RF bias
modules are restricted to attenuation, meaning |𝑏 | ≤ 1.

3.3 Nonlinear Activation Module
To enhance RF data processing, we need an activation func-
tion for 𝑎 = 𝜏 (𝑦). Given that 𝑦 is complex, the function must
introduce nonlinearity in amplitude and/or phase. In RF cir-
cuits, passive components are linear within their operating
range, maintaining constant loss regardless of input power,
while active components exhibit nonlinear characteristics [8].
Amplitude nonlinearity is relatively easy to achieve using an
RF amplifier, as amplifiers are active devices with inherent
nonlinear properties. Thus, we utilize an RF amplifier as the
activation module in the WDNN, as detailed in Fig. 10(b).

Leveraging the nonlinear properties of RF amplifiers as
activation functions in WDNN requires careful design, as
nonlinearity mainly arises in the saturation and cutoff regions.
Firstly, we focus on the saturation region. At low input power,
the amplifier operates linearly with constant gain, but as input
power increases, gain compression occurs and output power
saturates, resulting in significant nonlinearity. However, this
nonlinearity cannot be directly exploited since typical RF sig-
nals have low input power (e.g., -30 to -20 dBm), insufficient
to drive the amplifier into saturation.

When an RF amplifier enters the cutoff region, the collec-
tor current is nearly zero, causing it to be unable to output
voltage or amplify signals. One way to force the amplifier into
the cutoff region is to provide a supply voltage significantly
lower than its normal operating voltage. We assume WDNN
operates at 5 GHz and use a LibreVNA [48] to measure the
RF amplifier’s characteristics at this frequency. Fig. 11(a)
shows the experimental setup. We adjust the RF power at
one port, and measure the amplifier’s gain through the other
port. Fig. 11(b) shows the amplification characteristics of the
SBB5089z RF amplifier [37] under different supply voltages.
When the voltage is in the 1∼1.4V range, the RF amplifier is
indeed in the cutoff region, with a gain of around -10∼
-2.5dB. Although the curve shows slight nonlinearity, there
is significant signal attenuation. At 1.6V, the amplification
curve is around 0 dB and exhibits strong nonlinearity, similar
to the ReLU and ELU activation functions [13]. As the volt-
age increases further, the amplifier moves out of the cutoff
region, and the amplification curve becomes smoother with
less noticeable nonlinearity. We also test multiple SBB5089Z
RF amplifiers at a supply voltage of 1.6V to evaluate the
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Figure 11: Adjusting the supply voltage of the RF amplifier to operate in an nonlinear region for activation function.

stability of their nonlinear activation capability. As shown in
Fig. 11(c), the stability of this chip is satisfactory.

While many other RF amplifiers can meet the design re-
quirements of the WDNN’s nonlinear activation module, we
test several amplifier chips, such as SE5004L [40], GGS8005 [14],
and GALI-24+ [32]. As shown in Fig. 11(d), the results reveal
that the SBB5089Z exhibites the best nonlinear performance
under conditions of approximately 0dB gain and operation
in the cutoff region. Therefore, in this study, we select the
SBB5089Z RF amplifier and set the supply voltage to 1.6V
to implement the nonlinear activation module for a WDNN
operating at 5 GHz.

3.4 Inverse Design for WDNN Implementation
We obtain the weights for each RF coupler using the gradient
descent method (see Fig. 5): 𝛽, 𝑛, 𝜃1, 𝜃2, 𝑎𝑐 , 𝜃𝑐1, 𝜃𝑐2, the same
applies to the RF bias module: 𝐴𝑏 and 𝜃𝑏 . Next, we select
suitable substrate materials and thicknesses to facilitate the
design of the geometric parameters and component values for
each RF module. In the unequal power splitter and combiner,
when 𝛽 approaches 1, input port 1 performs power splitting
and combines with input port 2; when 𝛽 approaches 0, the
power splitting is performed by input port 2. Based on the
power splitter ratio 𝑛, we can then determine the specific pa-
rameters: 𝐷𝑠1, 𝐷𝑠2, 𝐷𝑚1, 𝐷𝑚2, 𝐷𝑐1, 𝐷𝑐2, 𝐷𝑚3, 𝐷𝑚4, and the
resistance values of the resistors: 𝑅𝑠 , and 𝑅𝑐 . The specific for-
mulas can be referenced in [19]. For the phase delays 𝜃1 and
𝜃2, we calculate the required line length based on transmis-
sion line theory [41]. For the RF unequal coupler sub-module,
we apply the optimized 𝑛𝑐 , 𝜃𝑐1, and 𝜃𝑐2 to calculate the same
even- and odd-mode characteristic impedances (𝑧𝑒1, 𝑧𝑒2, 𝑧𝑜1,
and 𝑧𝑜2) with the closed-form design formulas (equations 8-
11 in [44]). Then we use the coupled microstrip transmission
line theory [17] to determine the geometric parameters in-
versely: 𝐿1, 𝐿2, 𝐷1, 𝐷2,𝑊1,𝑊2, 𝑆1, 𝑆2 with these characteristic
impedances. Finally, we use HFSS [16] to fine-tune these
geometric parameters to address errors caused by parasitic
capacitance and coupling between lines. For the bias modules,
to implement the 𝐴𝑏𝑒

𝑗𝜃𝑏 , we use the Pi attenuator calcula-
tor [34] to calculate the resistance values 𝑅1, 𝑅2, and 𝑅3, and
we also use transmission line theory [41] to calculate the
required phase delay length.

4 Evaluation
To assess the capability of WDNN in RF signal processing at
the physical layer, we design three representative tasks: (1)
amplitude-modulated (AM) wireless communication decod-
ing; (2) phase-based angle-of-arrival (AoA) estimation; and
(3) human fall detection using WiFi channel state information
(CSI). The first two tasks use a signal frequency of 5 GHz. In
the third task, we use the 2.4 GHz WiFi and select the CSI
of one sub-carrier to perform the sensing task. Given that the
diffractive NN model is a supervised learning-based method,
we provide a detailed description of the training procedures
for the WDNN and the SOTA. Furthermore, comprehensive
comparative experiments are conducted to evaluate their re-
spective performances.

4.1 Training Dataset Preparation
AM Decoding. Consider that an AM signal, 𝑠 (𝑡) = [𝐴𝑚𝑏 (𝑡)+
𝐴𝑐 ]𝑐𝑜𝑠 (2𝜋 𝑓𝑐𝑡+𝜃𝑐 ), where𝐴𝑐 is the carrier amplitude, 𝑓𝑐 is the
carrier frequency, 𝜃𝑐 is the initial phase, and 𝐴𝑚 is the ampli-
tude of the modulating signal. AM decoding systems typically
include an antenna and an automatic gain control (AGC) mod-
ule to receive RF signals. Since the AGC compensates for 𝐴𝑐 ,
we only need to generate normalized amplitude information
for the training dataset. With only a single receiving (RX)
antenna, phase information can be ignored, allowing the net-
work’s amplitude decoding to remain unaffected by 𝜃𝑐 . We
configure the system to use 32-level AM, meaning each level
encodes 5 bits. Therefore, we generate an amplitude-value
dataset and corresponding labels. Additionally, we incorpo-
rate the simulated noise with the RF noise modeling tool [20]
to enhance the complexity of the dataset.

AoA Estimation. We use 2𝑀 separate antennas to collect the
RF signal for AoA estimation, and we set both input and out-
put channels to 2𝑀 . These data are modeled using a Uniform
Linear Array (ULA) with an antenna spacing of half a wave-
length. We set the incident angle range between -60°and 60°.
For each incident angle 𝜃𝑖𝑛𝑐 , we compute the array steering
vector 𝑎(𝜃𝑖𝑛𝑐 ) as: [𝑒− 𝑗0, 𝑒− 𝑗𝜆2𝜋𝑑𝑠𝑖𝑛 (𝜃𝑖𝑛𝑐 ) , 𝑒− 𝑗2𝜆2𝜋𝑑𝑠𝑖𝑛 (𝜃𝑖𝑛𝑐 ) , ...,
𝑒− 𝑗 (𝑃−1)𝜆2𝜋𝑑𝑠𝑖𝑛 (𝜃𝑖𝑛𝑐 ) ] , where 𝑃 indicates the antenna number,
𝜆 is the wavelength, and 𝑑 is the antenna spacing (here is
3 cm). We assume the noise vector to be 𝑛 and the signal
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Figure 12: Micro-benchmark of the AM decoding tasks
with different modulation levels.

4 6 8 10121416
# of input ports

0

25

50

75

100

A
cc

ur
ac

y 
(%

)

AoA-16
AoA-31

AoA-61
AoA-121

(a) Number of the in-
put/output ports (2𝑀)

2 4 6 8 101214
# of coupler columns    

0

25

50

75

100

A
cc

ur
ac

y 
(%

)

AoA-16
AoA-31

AoA-61
AoA-121

(b) Number of columns
in coupler network (𝑁 )

1 2 3 4 5
# of hidden layers  

0

25

50

75

100

A
cc

ur
ac

y 
(%

)

AoA-16
AoA-31

AoA-61
AoA-121

(c) Number of the hidden
layers (𝐻 )

Figure 13: Micro-benchmark of the AoA estimation task
with different categorizations.
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source to be 𝑠; thus, the received signal is given by 𝑦 (𝜃𝑖𝑛𝑐 ) =
𝑎(𝜃𝑖𝑛𝑐 )𝑠 + 𝑛. Note that both 𝑠 and 𝑛 are complex numbers.
For each incident angle 𝜃𝑖𝑛𝑐 , we define its classification label
as (𝜃𝑖𝑛𝑐 + 60°)//𝑟𝑒𝑠, and 𝑟𝑒𝑠 is the defined resolution. This
results in a total of 31 classes.

Wi-Fi CSI Based Fall Detection. We directly utilize the
fall detection dataset provided in [2] as our training dataset.
This dataset is collected using a TP-LINK AC1750 access
point and an Intel 5300 network card, with the experimental
setup comprising three TX antennas and three RX antennas.
Given the unique characteristics of diffractive NNs, which
currently can only process instantaneous sequential signals,
we select the signals corresponding to periods when the user
is in a stable posture in the dataset. Specifically, we select
one sub-carrier in the 20 MHz band and extract the initial and
final frames of each activity sequence, representing upright
(standing) and fallen postures, respectively. We partition the
dataset based on the three TX antennas, treating the signals
received by each of the three RX antennas from each TX
antenna as an independent sample.

4.2 WDNN Model Training
We configure the input and output of WDNN with 2𝑀 ports.
In addition, the parameter 𝑁 (the number of columns in the
RF coupler network) in the propagation modules serves as
a hyperparameter that affects propagation performance. The
number of hidden layers, 𝐻 , is another key hyperparameter

for network performance. Overall, the WDNN model con-
tains 𝐻+1 propagation modules. We construct a mathematical
model of the WDNN based on the hyperparameters: 𝑀 , 𝑁 and
𝐻 . We use the Adam solver [21] to obtain the optimal weights
and the NNI [31] hyperparameter tuning tool to achieve opti-
mal settings for the WDNN.

AM Decoding: The amplitude categories are assigned to the
2𝑀 output ports, following an output scheme similar to [15],
where the signal energy at each output port is measured by RF
power detectors and used as features. For example, with 𝑀 =

4 and a 32-class classification task, the 8 output ports each
represent category groups 0–3, 4–7, . . . , 28–31; the signal
energy at each port is divided into 4 levels for classification
within each group. Considering that the output of WDNN is
analog and exhibits continuous classification characteristics
(similar to a regression task), the overall network can also
achieve 8-, 16-, 32-, and 64-class classification based on the
voltage classification accuracy at each output port.

To this end, we perform hyperparameter optimization ex-
periments for WDNN with the NNI tool [31] in four classifi-
cation tasks under a simulated SNR of 20 dB. To determine
the values of the three hyperparameters, we conduct three
sets of experiments. In each experiment, two hyperparame-
ters are fixed at their optimal values while the third is varied,
and WDNN is retrained for each variation. As illustrated in
Fig. 12, for the 32-level amplitude classification task, the
optimal values for 𝑀 , 𝑁 , and 𝐻 are 4, 8, and 2, respectively.
Furthermore, as shown in Fig. 14, the system demonstrates
robust noise immunity when employing the optimal hyperpa-
rameter settings and trained WDNN weights under various
simulated SNR conditions.

AoA Estimation: This WDNN is to classify input signals
from 2𝑀 RX antennas to determine the AoA. We take a 31-
class AoA classification task (4° resolution) as an example,
the output categories are distributed across 8 ports (i.e., 𝑀=4),
with each output corresponding to a category group,e.g., 0-2,
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Figure 16: Micro-benchmark of the Wi-Fi CSI-based ges-
ture recoginition task.

3-6, 7-10, ..., 27-30. The signal energy level of each output
is used to classify within each sub-category group, and the
overall model can also achieve 16-, 31-, 61-, and 121-class
classification based on the voltage classification accuracy at
each output port. We also employ NNI for hyperparameter
tuning and conduct experiments, including training and test-
ing AoA classification at varying resolution requirements, to
confirm the optimal hyperparameters. The results are shown
in Fig. 13, resulting in the values of 𝑀 , 𝑁 , and 𝐻 as 4, 8, 2.
Additionally, we test WDNN’s AoA classification effective-
ness across various incident signal intensities , as illustrated
in Fig. 15. The results demonstrate that WDNN efficiently
isolates amplitude effects, enabling AoA prediction based
solely on phase differences between antennas.

Wi-Fi CSI Based Fall Detection. The proposed WDNN
model is designed to detect user fall events by leveraging
WiFi CSI collected from three RX antennas, thereby distin-
guishing between standing and lying states. In this setup, both
the input and output ports are configured to be 2𝑀 . Signals
from the three independent incident antennas are distributed
to three of the input ports, while the remaining input ports
are terminated with a 50 Ω load. For the output channels, we
designate port 1 and the last port as the output label channels
for binary classification. Hyperparameter optimization is per-
formed using NNI and results are illustrated in Fig. 16. The
optimal hyperparameter values are determined to be 𝑀 = 3,
𝑁 = 6, and 𝐻 = 2. These experimental results demonstrate
that our WDNN is indeed capable of directly determining
whether a user in the environment is standing or lying down,
solely based on the CSI obtained from three RX antennas.

4.3 Ablation Study
To validate the effectiveness of the propagation module com-
posed of our proposed weighted asymmetric RF couplers, and
the nonlinear activation module implemented using RF ampli-
fiers, we conduct an ablation study. The results are shown in
Fig. 17, we detail the x-axis categories as follows. "plaNN"
is the current SOTA with an equal RF coupler network, but
no activation. "plaNN+NL" adds nonlinear activation. "un-
equalNN+L" uses unequal symmetric RF couplers with linear
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Figure 17: Ablation study results showing performance
variation with the proposed propagation modules and
nonlinear activation modules.
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Figure 18: Performance comparison with the baseline
diffractive NNs and digital deep learning methods.

activation, while "unequalNN+NL" uses our nonlinear activa-
tion modules. "WDNN+L" features our weighted asymmetric
RF coupler with linear activation, and "WDNN+NL" includes
nonlinear activation, completing our design. "NN+L" is a
digital NN with linear activation, and "NN+NL" includes
nonlinear activation, serving as the NN’s upper bound. No-
tably, "plaNN", "unequalNN", and "WDNN" represent mod-
els optimized through hyperparameter tuning to achieve their
best classification performance. Additionally, "NN" shares
the same network parameters as "WDNN", such as two hid-
den layers. The experimental results demonstrate that our
proposed propagation module and nonlinear activation signif-
icantly enhance the performance of diffractive NNs, closely
approaching the performance of digital NNs with similar
settings. These results validate that our method enables NN
computations in the analog domain to achieve performance
comparable to those in the digital domain.

4.4 Comparison with Digital SOTA Models
We systematically compare the performance of our physical-
layer-based WDNN approach with baseline fully digital ma-
chine learning methods on the three RF data processing tasks.
Specifically, we select MLP, 1D CNN, ResNet, RNN, LSTM,
and vision transformer (ViT), as baseline digital methods,
and utilize the dataset described in Sec. 4.1 for training. In all
experiments, the models process data in the time domain. Con-
sidering that ResNet and ViT require two-dimensional input,
the original 1×2M antenna data is reshaped into 2×M. Exper-
imental results, shown in Fig. 18, demonstrate that WDNN
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(a) Left: AM communication RX antenna; right: AoA estimation RX antennas

(b) Details of WDNN prototypes. Our optimized two WDNN have the same
hyperparameters: 𝑀 = 4, 𝑁 = 8, with 3 propagation modules, 2 bias and
activation modules, both having sizes of 12𝑐𝑚 × 22𝑐𝑚 × 42𝑐𝑚

(c) Details of the pla-NN (SOTA) prototypes. The optimized pla-NNs for the
two tasks share the same hyperparameters: 𝑀 = 4, 𝑁 = 6, with 8 propagation
modules and 7 bias modules, both having sizes of 13𝑐𝑚 × 52𝑐𝑚 × 6𝑐𝑚
Figure 19: Details of our proposed WDNN prototypes and
the existing SOTA (pla-NN [15]) prototypes.

achieves a classification accuracy comparable to that of digital
MLP and other digital SOTA methods, and even outperforms
ViT on certain tasks. This can be attributed to the fact that ViT
is less effective when handling input data of relatively small
size. These experimental results indicate that our WDNN is
well-suited for processing RF data and can achieve perfor-
mance comparable to digital machine learning algorithms on
certain tasks.

4.5 Real-world Experiments
4.5.1 Prototype Implementation and Experiment Setup.
Following the implementation outlined in Sec. 3.4, we proto-
type the WDNNs with the trained weights using PCB tech-
nology for two tasks: AM decoding and AoA estimation. The
details are as shown in Fig. 19. We use an 8-channel RF power
detector as the output layer, paired with an 8-channel ADC
(CS4382A [29]) device to retrieve feature data or process-
ing results, as shown in Fig. 19(c)-iv. This output module
is shared with two prototyped WDNNs. To facilitate perfor-
mance comparison with the SOTA (pla-NN), we also conduct
micro-benchmark experiments using a hyperparameter tuner
to determine the optimal hyperparameters for the pla-NN
models. For both AM decoding and AoA estimation tasks,

(a) AM communication decoding

(b) Azimuth AoA estimation
Figure 20: Experimental setups of two testing tasks.
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Figure 21: Real-world results for two tasks. AM-8, AM-
16, and AM-32 denote using the prototype for 8, 16, and
32-level classification, similar to AoA.

the optimal settings are as follows: 𝑀 = 4, 𝑁 = 6, with 8 prop-
agation modules and 7 hidden layers. The best-performing
hyperparameters and their corresponding trained weights are
then used to fabricate the pla-NN prototype.

Fig. 20 illustrates our experimental setups. For the AM
communication, we use a USRP2974 [38] to generate 32-level
AM-modulated signals at a 48 Kbps rate, with a 5GHz patch
antenna as the transmitter; the WDNN serves as the receiver
for signal reception and amplitude classification. For the AoA
estimation, we also use the USRP2974 and a 5GHz antenna
to transmit continuous waves. A laser-calibrated robotic arm
precisely controls the incidence angles. The WDNN, as the
receiver, facilitates signal reception and AoA estimation.

4.5.2 AM decoding performance. We conduct real-world
tests on the 32-level amplitude classification task. As shown
in Fig. 21(a), our system achieves a classification accuracy
of 98.5%, closely matching the simulated accuracy of 99.8%.
In contrast, pla-NN only reaches accuracies of 21.6% in real-
world tests and 23.7% in simulations. This demonstrates that
our system significantly outperforms the SOTA in data pro-
cessing capabilities at the physical layer. The classification
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Figure 22: Confusion matrices on the 32-level amplitude
classification task in the real-world experiment.
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Figure 23: Confusion matrices on the 31-class AoA estima-
tion task in the real-world experiment.

confusion matrices for both systems are shown in Fig. 22, indi-
cating that pla-NN struggles with accurate decoding, whereas
our WDNN can nearly perfectly decode the original data,
achieving stable AM communication with simple redundancy
code design.

4.5.3 AoA estimation performance. We test the perfor-
mance for 31-class AoA estimation in an anechoic chamber.
As shown in Fig. 21, our system achieves 93.7% classification
accuracy, closely matching the simulation accuracy of 95.1%.
In contrast, pla-NN achieves only 16.9% accuracy in real-
world and 19.2% in simulations. The confusion matrices in
Fig. 23 show that pla-NN struggles with AoA estimation, hav-
ing up to 4-type classification ability. Our WDNN effectively
achieves 4° resolution in AoA estimation within the range
of -60° to 60°. This task demonstrates WDNN’s powerful
capability to process multi-channel phase information and
perform multi-class classification.

4.5.4 Cost of WDNN. We measure the power consump-
tion of the system prototype, including all propagation, bias,
and activation modules in Fig. 19(c), totaling approximately
51 mW. The primary power-consuming component is the
RF amplifiers, which operate in the nonlinear region with a
gain of about -3 to 0 dB, resulting in minimal power usage.
This is why our WDNN consumes very little power during
analog domain computation. The cost of our WDNN proto-
type is around 34.5 dollars, including PCB boards at ∼ $20,
electronic components at $1, RF amplifiers at $4.5, and RF
connectors at $9. Although the prototype is not cheap, we
believe that employing analog IC technologies for WDNN
can reduce manufacturing costs.

5 Related Work
5.1 Diffractive neural networks
Diffractive neural networks have become a promising ap-
proach for NN-based signal processing at the physical layer of
wireless systems A primary implementation involves metasurface-
based diffractive NNs, where each metasurface layer serves

as a hidden layer in the NNs. For instance, [27, 28, 46] em-
ploy diffraction for parallel analog computing, with weights
learned offline. Although tunable metasurfaces allow lim-
ited real-time adjustments, diffraction inherently constrains
weight adaptability, as propagation characteristics are dictated
by fixed structural parameters. Furthermore, these designs
lack nonlinear activation, as diffraction-based transformations
are fundamentally linear [47, 50], limiting their ability to
perform complex inference tasks. Additionally, metasurface-
based implementations require precise calibration and occupy
significant physical space, further restricting their scalability.

Analog circuit-based diffractive NNs reduce spatial con-
straints and calibration complexity by enabling direct signal
transmission through electrical pathways. Planar diffractive
neural networks (pla-NNs) [15] have demonstrated feasibility
in tasks such as AoA estimation at 10 GHz, with terahertz im-
plementations [12] extending their applicability to 265 GHz.
However, these designs rely on fixed propagation weights
with limited adaptability and only phase delay mechanisms,
lacking the nonlinear activation needed for advanced learning
tasks. Therefore, they remain constrained to linear operations.

5.2 Feature enhancement in analog domain
5.2.1 Radio-frequency signals. Metasurfaces have been
widely explored for enhancing RF signal processing at the
physical layer, particularly in millimeter-wave (mmWave)
applications. [35] optimized mmWave metasurfaces to en-
able small phased-array antennas to achieve dynamic steering
and focusing capabilities comparable to large arrays. Simi-
larly, [30] extended the coverage of 60 GHz WiFi through
optimized metasurface designs, while [42] improved indoor
GNSS signal reception using similar enhancements. Beyond
passive designs, active metasurfaces have been introduced
to dynamically adapt to environmental variations, offering
greater flexibility in RF signal control. [9, 24, 25] developed
reconfigurable metasurfaces capable of adjusting their config-
urations in real time, enhancing feature extraction and signal
amplification in the analog domain and facilitating more effi-
cient RF signal processing.
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5.2.2 Acoustic signals. 3D-printed passive acoustic meta-
surfaces have been widely used for efficient feature extrac-
tion and signal enhancement at the physical layer. [49] opti-
mized metasurfaces to convert digital beamforming into an
analog process. Expanding on this capability, [11] designed
a metasurface to enhance incident angle feature extraction,
improving angle sensing accuracy. Similarly, [10] refined
channel features to enhance acoustic imaging, achieving high-
resolution imaging with minimal hardware. Complementing
these advancements, [1] developed a passive filter for spa-
tial encoding, improving spatial perception through multipath
encoding and robotic-assisted imaging.

5.2.3 Light signals. [4, 22, 36] integrated optical masks
with low-resolution CMOS sensors to develop the minimalist
visual system for performing visual tasks. The optical mask
functions as the feature extraction layer of a neural network,
with subsequent layers handling inference. [22] further opti-
mized pixel shapes through task-driven training, enhancing its
adaptability. Despite relying on only a few pixels, the system
achieves performance comparable to high-resolution cameras
in tasks such as indoor monitoring, illumination measure-
ment, and traffic estimation, highlighting the effectiveness of
optical-domain feature extraction.

Our work: While these approaches introduce external
physical-layer hardware to enhance signal processing, our
work directly integrates adaptive feature extraction and robust
signal processing within the physical layer, enabling more
efficient and scalable analog-domain computation.

6 Discussion
Supporting Higher Frequency. By scaling the size of com-
ponents such as couplers and phase shifters, and selecting
suitable amplifiers, we can adapt WDNN to any desired band.
[12] demonstrates a diffractive NN using plasmonic circuits
at 265 GHz, confirming the feasibility of analog circuit-based
networks at higher frequencies.

Supporting Wideband Wireless System. WDNN can be
extended to support wideband applications, such as Frequency-
Modulated Continuous Wave (FMCW) radar systems. This
capability relies on the wideband design of RF components,
including RF couplers, phase shifters, attenuators, and am-
plifiers. The frequency response characteristics of these RF
components are integrated into the wideband WDNN weight
optimization process, thereby ensuring that the constructed
WDNN efficiently supports wideband signal processing. Ex-
isting works [3, 45] have proposed coupler designs suitable
for multiple frequency bands, while [39] introduces RF cou-
plers that can adapt to various frequency offsets. Therefore, by
employing advanced RF circuit design and wideband weight
optimization techniques, WDNN enables flexible allocation

of network weights across different frequencies, leading to
improved wideband adaptability.

Impact of the temperature. The gain parameter curve of am-
plifiers used in nonlinear RF modules may fluctuate with large
changes in ambient temperature. To enable our WDNN to
automatically compensate for the impact of outdoor tempera-
ture variations, we can extract the amplifier’s gain parameters
at different temperatures from its datasheets. Furthermore, by
incorporating a temperature sensor, the supply voltage of the
amplifier chips can be dynamically adjusted to ensure they
consistently operate within the nonlinear region.

Reusability of WDNN. The activation modules in the WDNN
are reusable, meaning that they can be used in different
WDNN models for various tasks. However, the existing weight
modules like feature extraction and classification layers are
not reusable, as the parameters need to be retrained for each
new task. If a general-purpose NN can be developed as a
foundational model for RF feature extraction, it would facil-
itate the design of a universal extraction module based on
WDNN. Such a module would exhibit significant reusability
and modularity, enabling it to serve as a standardized add-
on component that could be commercialized and seamlessly
integrated into a wide variety of RF hardware platforms.

Analog RF IC Design. Analog integrated circuit (IC) tech-
nology is highly mature and widely utilized in modern mobile
devices. For instance, RF front-end components such as low-
noise amplifiers, power amplifiers, and mixers are typical
analog chips that are integrated within RF modules and com-
munication system-on-chips (SoCs). The implementation of
WDNN can also be realized by the analog IC technology, as
it allows a substantial reduction in hardware footprint and
supports efficient deployment of advanced neural networks
directly at the physical layer.

7 Conclusion
In this paper, we introduce WDNN, a weighted diffractive
neural network designed for direct RF signal processing at
the physical layer. Our designed RF coupler unit implements
arbitrary asymmetric propagation weights, creating a diffrac-
tive propagation module with adjustable connections. We also
integrate RF amplifiers that reliably operate in the nonlinear
region for activation functionality. These features enable our
WDNN to efficiently and robustly process RF signals, sur-
passing the performance of current SOTA diffractive NNs.
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