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Figure 1: A taste of HandPad: (a) Our bodies can be constructed as capacitive circuits. (b) When we touch different locations on 
one hand with a finger from the other, the intrinsic capacitance of our arm is altered. (c) Utilizing changes in human capacitance 
during touch interactions, we engineer a skin-based touchscreen system that supports multiple input modalities. 

ABSTRACT 
The convenient text input system is a pain point for devices such as 
AR glasses, and it is difficult for existing solutions to balance porta-
bility and efficiency. This paper introduces HandPad, the system 
that turns the hand into an on-the-go touchscreen, which realizes 
interaction on the hand via human capacitance. HandPad achieves 
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keystroke and handwriting inputs for letters, numbers, and Chi-
nese characters, reducing the dependency on capacitive or pressure 
sensor arrays. Specifically, the system verifies the feasibility of 
touch point localization on the hand using the human capacitance 
model and proposes a handwriting recognition system based on Bi-
LSTM and ResNet. The transfer learning-based system only needs 
a small amount of training data to build a handwriting recognition 
model for the target user. Experiments in real environments verify 
the feasibility of HandPad for keystroke (accuracy of 100%) and 
handwriting recognition for letters (accuracy of 99.1%), numbers 
(accuracy of 97.6%) and Chinese characters (accuracy of 97.9%). 

CCS CONCEPTS 
• Human-centered computing → Interaction techniques. 
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1 INTRODUCTION 
Augmented reality devices such as AR glasses provide users with 
an intuitive visual experience, but a convenient text input system 
for mobile scenarios is an unsolved pain point [19]. Due to the 
problem of thick fingers, traditional methods based on keyboards 
or touchscreens have limitations on device size, making it difficult 
to meet the portability requirement of mobile scenarios. To enhance 
the portability and efficiency of the system, researchers proposed 
different ways of text input methods for AR systems, including 
speech recognition [1, 17, 68], mid-air gestures [25, 45, 51, 65] and 
touch-based input interfaces [18, 62]. However, speech recogni-
tion is affected by ambient noise and can cause privacy concerns 
for users in public places [17, 68]. Wireless signal-based mid-air 
gestures are less robust to environmental disturbances [25, 43, 51]. 
In addition, researchers designed different types of wearable in-
teraction interfaces for AR glasses, including fingers [45, 62], and 
hands [18]. However, the limited contact area of the finger [62] 
only supports limited keystrokes. The contact area of the hand can 
be sufficient for handwriting input, but the existing work relies on 
the sensor matrix and the commonly used pressure sensor matrix 
suffers from jitter, jumps, and nonlinear artifacts [18]. 

We propose an innovative capacitance-based interaction system, 
which seeks to expand the user’s palm into a powerful "touch-
screen" input interface. Starting from the unique perspective of 
intrinsic human body capacitance, as shown in Fig. 1, we explore 
modulation techniques based on this inherent property. When a 
user touches different locations on their left hand with a finger 
from their right hand, changes in the touch points alter the length 
of two sections of the left arm tissue, subsequently affecting their 
equivalent capacitance and the human capacitance measured by the 
sensor. Based on this principle, we develop a novel human-computer 
interaction (HCI) system named HandPad. Although related work 
has utilized capacitance for HCI systems, such as recognizing dif-
ferent fingers [26, 40], parts of a finger [32, 50], varying touch 
pressures [4, 31], and finger angles [47, 66], our system differs from 
these works in two main aspects: 

• While related work requires traditional multi-channel capacitive 
sensors [10, 18], HandPad uses a single three-channel capacitive 
sensor to transform the hand into a portable interaction inter-
face, significantly simplifying system complexity and reducing 
reliance on sensor matrices. 
• Related work is typically limited to specific applications. HandPad 
not only identifies different touch modes but also actively modu-
lates the intrinsic human capacitance to sense touch locations 
and sliding trajectories. Thus, HandPad can realize touch-based 
keystroke input, allowing users to perform different keystrokes 
by touching distinct positions on the left hand. Furthermore, 
it enables hand-based handwriting input, supporting various 

languages including letters, numbers, and Chinese characters 
capabilities not previously achieved in earlier studies. 

Designing HandPad, a human capacitance interaction system, 
is challenging. The core issue is achieving stable modulation of 
human body capacitance, requiring precise measurement and inter-
pretation of capacitive signals while preventing interference from 
environmental factors. Electromagnetic (EM) interference can af-
fect sensor readings, leading to inaccurate touch point localization. 
Additionally, different users’ writing styles and habits make hand-
writing recognition difficult. Collecting substantial writing for an 
effective recognition model is time-consuming and burdensome. 
The complexity of Chinese character strokes further complicates 
model training and handwriting recognition. 

To address these challenges, we adopt a series of innovative 
strategies. The HandPad system initially uses the user’s hand as an 
interactive interface, modulating the body’s intrinsic capacitance 
through finger touches to enable diverse input operations. During 
this process, the system has designed a precise finger model that 
matches the capacitance values of 14 fixed touch points on the 
hand and can be adjusted with the capacitance of 5 specific calibra-
tion points to accommodate the hand characteristics of different 
users. To ease the burden of dataset acquisition for the target user, 
HandPad employs transfer learning techniques. By leveraging a 
pre-trained model, we can fine-tune it with a limited amount of 
target user data, thereby speeding up the model training process 
and improving the accuracy of handwriting recognition. Finally, to 
simplify the difficulty of Chinese character handwriting recogni-
tion, the HandPad system does not recognize the entire character 
directly but decomposes it into fundamental strokes. Chinese char-
acters typically consist of 32 strokes, and HandPad categorizes these 
strokes into 19 types for recognition. The system not only identi-
fies individual strokes but also matches the sequences of strokes, 
thus accomplishing the recognition of the Chinese character. This 
stroke-level recognition greatly reduces the recognition complexity 
while also enhancing recognition speed and accuracy. 

We develop a prototype of HandPad by strategically placing 
ultra-miniature electrodes on three fingertip locations of the user’s 
hand. This innovative approach transforms the dorsum of the hand 
into an extended touch-sensitive interface for interaction, enabling 
both keystroke and handwriting input modalities. To validate the 
effectiveness of the proposed HandPad, we conduct a comprehen-
sive series of experiments. The experimental results confirm the 
high efficacy of HandPad in facilitating user input. Specifically, the 
system achieves a keystroke input accuracy of 100% when recogniz-
ing 3×4 keystrokes. In terms of handwriting input, HandPad shows 
remarkable precision across various categories: letters were recog-
nized with an accuracy of 99.1%, numerical digits with 97.6%, and 
Chinese strokes with 94.6%. Furthermore, the system demonstrated 
a 97.9% accuracy rate in recognizing complete Chinese characters. 
The contributions of this research are detailed below: 

• We propose a novel interaction system, called HandPad, demon-
strating the practicality of constructing an augmented touch-
screen interface on the human hand by employing a model of 
human capacitance. Our system’s robustness permits accurate 
touch inputs on the hand skin’s surface, paving the way for in-
novative wearable technologies. 

https://doi.org/10.1145/3654777.3676328
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• In keystroke input mode, we utilize a sophisticated finger model 
to accurately localize touchpoints to ensure intuitive and efficient 
keystroke interaction across users. 
• In handwriting mode, we employ Bi-LSTM and ResNet architec-
tures to analyze the sliding trajectories. Additionally, we leverage 
a compact personal dataset to facilitate efficient transfer learning 
for accommodating new users. 
• We implement the prototype of HandPad and conduct extensive 
experiments in real-world environments to assess its keystroke 
and handwriting interaction capabilities. The results indicate 
that HandPad is an innovative interaction system, and can be de-
ployed on wearable devices to extend the hand into a touchscreen 
interface. 

2 RELATED WORK 

2.1 Handwriting and Key Stroke Methods 
Recent research has proposed handwriting recognition systems 
based on wireless signals such as acoustic [51, 65, 69], magnetic [25, 
44], vibration signal [14, 15], and external interface [18]. Acoustic 
signals can also track the pen’s writing trajectory [51, 65] or capture 
the friction sound of the pen tip [6, 69] to recognize handwriting 
inputs. MagHacker [44] and WiReader [25] recognize the writing 
trajectory via the magnetic field and Wi-Fi signal. VibWriter [14, 15] 
detects handwriting by analyzing the vibration signals on a surface. 

Mechanical keys-based systems are challenging to configure 
on small mobile devices, and researches provides effective solu-
tions based on acoustic signal [28, 36], and vibration signal [8, 9]. 
TapSense [28] distinguished between different interactions by the 
acoustic signals of the finger. SonarID [36] sent ZC sequences [71] 
using a speaker and identified the keystroke. ViType [9] and Taprint 
[8] identified the different inputs via the vibration signals gener-
ated by tapping different hand positions. PrinType [45] used the 
fingerprint sensor to determine the different positions of the thumb 
clicks on the other fingers. 

2.2 HCI based on Human Capacitance 
There is a high degree of differentiation between the different hand 
gestures [3, 10, 11, 22, 35, 38, 39, 42, 63], such as fist clenching, open 
palm, etc. The finger recognition-based interaction approaches 
[26, 27, 40] use the finger as a complementary dimension to the 
human-computer interaction system. Different parts of the finger 
(e.g., finger belly, nail) have different electrical properties [7, 32, 50], 
which can be captured and recognized by capacitive sensors. Touch 
pressure recognition in conventional touch screen devices relies on 
an additional sensing layer; capacitive sensor-based finger pressure 
recognition offers a low-cost solution [4, 12, 23, 31, 64]. Finger angle 
estimation based on the touch screen provides information about 
the interaction in 3D space [47, 55, 66]. 

HandPad allows for a wider range of interactions, including 
keystrokes, handwriting letters, numbers, etc. Furthermore, the 
interaction extensions based on the finger touch method require 
the user to learn and adapt. In contrast, the handwriting input 
method is more commonly used and therefore more familiar and 
easier for users to master. 

(a) The intrinsic and extrinsic capacitance of
the human body. 

(b) The circuit model of human capacitance. 

Figure 2: Human capacitance model: (a). Human capacitance 
measured by the capacitive sensor during finger touch; (b). 
The extrinsic capacitance includes the coupling capacitance 
of the human body (𝐶𝑙 𝑒𝑎𝑘 ) and the electrode (𝐶𝑟𝑒𝑡 ) to the 
ground, the capacitance between the skin and the electrode 
(𝐶𝑒𝑠 ), and the intrinsic capacitance of the electrode (𝐶𝑒 ). 

3 PRELIMINARY STUDY 

3.1 Human Capacitance Model 
HCI systems based on human capacitance recognize interaction 
contents utilizing different signal patterns of human capacitance. 
We need to build the human capacitance model to verify the feasi-
bility of HandPad. 

The system measures the human capacitance at the fingertip, 
as shown in Fig. 2(a). Human capacitance can be divided into the 
intrinsic part and the extrinsic part. The intrinsic part is the body 
tissue; the extrinsic part consists of the body or electrodes and 
the external ground plane [34, 53]. The intrinsic part is usually 
considered to be static and related to the electrical properties of 
the body, and the equivalent capacitance of the body part tissue is 
only related to the size of the part being measured. The external 
part depends mainly on the external environment, such as objects 
in the return path (i.e., air), the contact between the electrodes and 
the skin, etc. 

HandPad builds interaction systems based on finger touch. The 
human capacitance 𝐶ℎ𝑢𝑚𝑎𝑛 measured from the fingertip contains 
two components, 𝐶𝑖𝑛 and 𝐶𝑒𝑥 . As shown in Fig. 2(b), 𝐶𝑖𝑛 represents 
the intrinsic part of the human capacitance, and 𝐶𝑒𝑥 represents the 
extrinsic part. The internal part is related to the electrical properties 
of the human body and the capacitance of part of the tissue 𝐶𝑡𝑖𝑠𝑠𝑢𝑒 
can be written as 𝐶𝑡 𝑖𝑠𝑠𝑢𝑒 = 𝜀𝐴/𝐿 and 𝑅𝑡 𝑖𝑠𝑠𝑢𝑒 = 𝐿/𝜎𝐴, where 𝐴 
represents the cross-sectional area of the tissue, 𝐿 represents the 
length, 𝜀 and 𝜎 represents the relative permittivity and conductiv-
ity. The extrinsic part contains the following components: 𝐶𝑙 𝑒𝑎𝑘 
represents the human body capacitance coupling to the ground, 
and 𝐶𝑟 𝑒𝑡 is the capacitance representing the electrode coupling to 
the ground. Furthermore, 𝐶𝑒𝑠 is the capacitance between the skin 
and the electrode, and 𝐶𝑒 represents the intrinsic capacitance of 
the electrode. 

3.2 HCI based on Human Capacitance 
Recent researches on HCI using human capacitance is mainly based 
on two-dimensional capacitive images. Considering the limitations 
of device size and user comfort, these systems only enable a lim-
ited expansion of interaction methods. We attempted to build the 
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(a) Modulation the intrinsic capacitance with
finger touch. 

(b) The circuit model of intrinsic capacitance. 

Figure 3: The intrinsic part of human capacitance.(a): Hand-
Pad enables different inputs based on different touch points; 
(b): The touch point divides the left arm into two parts, and 
the position of the touch point changes the size of these two 
body tissues, thus affecting their equivalent capacitances. 

interaction system with a capacitive sensor. The system transfers 
the touch interface from the device side to the user’s hand, thus 
alleviating the dependence of current interaction systems on the 
size of touch screens. 

The feasibility of HandPad is further demonstrated with the hu-
man capacitance model. Specifically, the user touches the left hand 
with the finger of the right hand at different positions (including 
the knuckles, back of the hand, etc.) to achieve different inputs, as 
shown in Fig. 3(a). 

During this process, the user’s right-hand moves a limited amount 
and the torso part remains almost stationary, so the extrinsic part of 
the human capacitance can be seen as constant, which verifies the 
modulation of human capacitance by touch behavior through the 
control variable method. We then analyze the intrinsic part of the 
human capacitance and the influence of different touch positions 
on it. We can divide the human body into four parts and create 
corresponding equivalent circuits for each, as shown in Fig. 3(b). 
The equivalent capacitance corresponding to the torso part and 
the right arm is independent of the touch position. The left arm is 
divided into two parts by the touch point of the right-hand finger, 
and the position of the touch point affects the length of the body 
tissue in both parts, thus changing the equivalent capacitance of 
the two parts. 

With a constant dielectric constant and cross-sectional area of 
the human tissue, its corresponding equivalent capacitance is in-
versely proportional to the length of the body. The intrinsic body 
capacitance corresponding to the four parts of human tissue can be 
written as: 

𝐶𝑖𝑛 = 
1 

1 
𝐶𝑡𝑜 
+ 1 

𝐶𝑟 +𝐶𝑙𝑢 
+ 1 

𝐶𝑙𝑙 

(1) 

where 𝐶𝑡 𝑜 and 𝐶𝑟 represent the equivalent capacitance of the 
torso and right arm, while 𝐶𝑙𝑢 and 𝐶𝑙 𝑙 represent the upper and lower 
parts of the left arm divided by the touch point and the length of 
two parts concerning the position of the touch point. The two parts 
can be written as 𝐶𝑙𝑢 = 𝜀𝐴𝑙𝑢 /𝐿𝑙𝑢 and 𝐶𝑙 𝑙 = 𝜀𝐴𝑙 𝑙 /𝐿𝑙 𝑙 ; 𝐴𝑙𝑢 and 𝐴𝑙 𝑙 is 
the cross-sectional area of two parts; 𝐿𝑙 𝑢 and 𝐿𝑙 𝑙 are the length of 
two parts, and the sum of the two is the length of the left arm. 

Figure 4: Feasibility of keystroking based on the human ca-
pacitance. Touch positions can be modulated with the human 
capacitance values. 

3.3 Feasibility of HandPad 
We illustrate the feasibility of implementing touch-based interac-
tion on the human body theoretically with the human capacitance 
model, and we further verify it with experiments. As shown in 
Fig. 3(a), a volunteer naturally touched the electrode connected 
to the capacitance sensor (TI FDC2214 [20]) with the fingertip of 
the left hand, and the right-hand finger touches the left hand. Ten 
locations on the fingers and back of the left hand were selected to 
verify the effect of the touch position on human capacitance. The 
sampling rate of the capacitive sensor is only 30𝐻𝑧, which requires 
a low performance of the device. 

The experimental results are shown in Fig. 4, where the volun-
teer touches ten locations in sequence from the fingertip to the 
wrist. The human capacitance measured by the sensor decreases 
as the distance between the touch point and the fingertip (i.e. 𝐿𝑙 𝑙 ) 
increases, and the human capacitance is inversely proportional to 
the distance. Because the distance to the upper part of the left arm 
(𝐿𝑙𝑢 ) is much greater than the lower part (𝐿𝑙 𝑙 ), and the equivalent 
capacitance of human tissue is inversely proportional to its length, 
the equivalent capacitance corresponding to the upper part (𝐶𝑙𝑢 ) 
varies more weakly with distance. Therefore, the human capaci-
tance measured by the sensor mainly reflects the change in the 
equivalent capacitance of the lower part (𝐶𝑙 𝑙 ). 

4 SYSTEM DESIGN 

4.1 Signal Acquisition 
As shown in Fig. 5, the capacitive sensor unit [33] consists of two 
parallel electrodes (𝐶𝑡 ) [56] and the physical contact of the user 
corresponds to a human capacitance 𝐶ℎ𝑢𝑚𝑎𝑛 in series with the 
branched circuit. The sensor monitors the touch behavior based on 
the capacitance of the branch. 

The charging loop: First, the capacitance 𝐶𝑡 receives an excita-
tion signal (usually an alternating current (AC) signal of a square 
or sine wave) with the amplitude 𝑉𝑒 𝑥 . As the voltage across the 
capacitance changes, the charge 𝑄𝑡 stored in the capacitance 𝐶𝑡 
can be written as [70]: 

𝑄𝑡 = 2𝐶𝑡 𝑉𝑒 𝑥 (2) 

The transfer loop: The charge stored by capacitance 𝐶𝑡 is then 
transferred to the feedback circuit, and the amount of charge gained 
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Figure 5: The capacitive sen-Figure 6: The model of three 
sor. fingers. 

by capacitance 𝐶𝑓 𝑏 is equal to the charge of 𝐶𝑡 during the charging 
process [49]. The output voltage 𝑉𝑜𝑢𝑡 of the amplifier at the end of 
the excitation cycle is determined by the feedback capacitance 𝐶 𝑓 𝑏 
[41]: 

2𝐶𝑡 𝑉𝑒 𝑥 = 𝐶𝑓 𝑏 (𝑉𝑟 𝑒 𝑓 − 𝑉𝑜𝑢𝑡 ) (3) 

𝑉𝑜𝑢𝑡 = 𝑉𝑟 𝑒 𝑓 − 2𝐶𝑡 𝑉𝑒 𝑥 /𝐶 𝑓 𝑏 (4) 

where 𝑉𝑟 𝑒 𝑓 is the reference voltage [49] of operational amplifier. 
As the user touches the sensor, the branch capacitance changes, 
and the human capacitance on the branch can be calculated based 
on the output of the amplifier 𝑉𝑜𝑢 𝑡 . 

The discharge loop: The loop current flows through the feed-
back capacitor 𝐶 𝑓 𝑏 and the feedback resistor 𝑅𝑓 𝑏 and is then re-
leased. 

4.2 Signal Pre-processing 
The user touching the left hand with a finger can also significantly 
increase the measured value. The internal capacitance can be writ-
ten as: 

𝐶 ′ 𝑖𝑛 = 
1 

1 
𝐶𝑡 
+ 1 

𝐶𝑙 

(5) 

where 𝐶𝑙 is the equivalent capacitance of the left arm. Compar-
ing the intrinsic capacitance of two states (𝐶𝑖 𝑛 and 𝐶′

𝑖𝑛 ), 𝐶𝑙 𝑢 is 
greater than 𝐶𝑙 and 𝐶𝑙 is much smaller than 𝐶𝑙 𝑙 (i.e., 2𝐶𝑙 < 𝐶𝑙 𝑙 ). 
The system can extract segments of the human capacitance signal 
for performing different interactions. The system uses a Gaussian 
filter to smooth the signal segments of the human capacitance, 
which mitigates the fluctuations caused by sensor noise. 

4.3 Finger Modeling 
Based on the human capacitance model, we verified the relationship 
between the touch position and the measurement. While only the 
amplitude can differentiate the touch point, the two-dimensional 
information of the touch points enables a wealth of application 
extensions. We collected human capacitance with the capacitive 
sensor of three channels at the fingertips of the index, middle, and 
ring fingers and built a simple writing pad on the three fingers. 

For the three fingers that make up the interaction interface, the 
volunteer was asked to touch each finger at ten locations and record 
the measurements of human capacitance and the distance from the 
touch point to the fingertip. 

As shown in Fig. 6, we normalized the human capacitance signals 
and it can be seen that the measurements are inversely proportional 

to the distance. We fitted the finger model using an inverse pro-
portional function, and as the back of the hand and the finger 
possess different cross-sectional areas, we fitted them separately. 
Then, considering the inconsistency in finger lengths, we scaled and 
translated three finger models. The finger models can be written as 
: 

𝑑 = 
𝛼𝑖 

𝑏 ∗ 𝐶ℎ𝑢𝑚𝑎𝑛 + 1 
+ 𝛽𝑖 (6) 

where 𝐶ℎ𝑢𝑚𝑎𝑛 represents the human capacitance measurement, 𝑏 
is the fitting parameter common to the three finger models, 𝛼 and 
𝛽 are the scaling and translation factors for the three fingers, and 𝑑 
represents the location of the touch point. With a single channel, 
the system can only acquire one-dimensional information about 
the contact point. 

5 APPLICATION 
HandPad implements an extended touchscreen on the hand based 
on human capacitance, enabling keystrokes and handwriting input 
for letters, numbers, and Chinese characters. The architecture of 
the system is shown in Fig. 7. 

5.1 Keystroke Input 
Keystroke-based interaction systems are widely present in various 
devices in people’s everyday lives. We attempt to implement the 
keystroke input using the capacitive sensor based on human capac-
itance on the hand. The keystroke input system consists of four 
parts: 

Registration: The length ratio of the finger joints varies from user 
to user and the position of the keystroke also changes. Therefore, 
before performing the keystroke, the system needs to record the 
position of the touch point on the fingers, as shown in the keystroke 
interface in Fig. 8. 

Calibration: Before pressing a keystroke, the user needs to touch 
the calibration points, the capacitance at the fingertip (𝑃1, 𝑃2, and 
𝑃3) and the back of the hand (𝑃5) can be used to adjust the capaci-
tance model of the corresponding fingers. 

Detection: According to the effect of finger touch on the intrinsic 
capacitance, a user touching the left hand causes an abrupt change 
in the body capacitance. The system can propose touch segmenta-
tion based on the amplitude, and we set the segmentation threshold 
as 𝑇𝑡 𝑜𝑢𝑐ℎ = 0.7 × 𝐶𝑛𝑜 _𝑡 𝑜𝑢𝑐ℎ + 0.3 × 𝐶𝑃5 . 

Recognition: The four keys on three fingers form a classic 3 × 4 
keystroke interface, with two buttons on the back of the hand 
for "Delete" and "Enter". The user touches different locations on 
the finger or the back of the hand for key press operation. The 
system uses the human capacitance and finger model to calculate 
the position of the touch point 𝑃𝑖𝑛𝑝𝑢𝑡 and selects the touch point 
closest to the recorded point 𝑃𝑘 𝑒 𝑦 as the key to HandPad. 

5.2 Handwriting Recognition 
The feasibility of using human capacitance to image finger move-
ments was confirmed, and we tried to implement the handwriting 
interface as shown in Fig. 8. The handwriting input system also 
consists of four parts: 

Registration: For different handwriting input tasks, the system 
collects the handwriting training set 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑢𝑠𝑒 𝑟 of the target user. 
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Figure 7: The interaction system architecture of HandPad: the dashed lines indicate the preparation for the target user, and the 
solid lines indicate the recognition process for keystrokes and handwriting inputs. 

Figure 8: The calibtration points and keystroke & handwrit-
ing interfaces of HandPad. 

Calibration: The user touches two calibration points, 𝑃4 and 𝑃5, 
to provide the capacitance value information of "Delete" and "Enter". 

Detection: The handwriting input system uses the capacitance 
value of 𝑃4 as the amplitude threshold for handwriting to extract 
the input segment. 

Recognition: For the handwritten fragments, the system carries 
out the normalization process for recognition. The handwriting 
recognition model for the target user is implemented based on 
transfer learning, which reduces the burden of dataset collection. 
The judgment of "Delete" and "Enter" is achieved by comparing the 
magnitude of calibration points. 

Considering the large number of Chinese characters, we divide 
Chinese character recognition into two parts: stroke recognition 
and stroke sequence matching. We create a Chinese character stroke 
dataset containing 20795 Chinese characters and their corre-
sponding stroke sequences. The system recognizes Chinese charac-
ters based on stroke sequence matching. 

Unlike the keystroke input, HandPad recognizes the handwrit-
ing input without relying on the positioning based on the finger 
model. We can convert the human capacitance measured by three 
capacitance sensors into 2D images of finger movements. Although 
the number of channels limits the imaging accuracy, we can mine 
the trace information of the handwriting from the time series, and 
the slight deformation does not affect the recognition of the hand-
writing input. As shown in Fig. 18, to display the finger movement 

trajectory clearly, the finger model was used to adjust. It can be 
seen that the capacitance sensor can reflect finger movements and 
infer handwriting input. 

5.2.1 Letter and Number Recognition. Considering that the col-
lected capacitance signals can exhibit variability depending on the 
different biometric characteristics and writing habits of users, the 
effectiveness of the neural network model for a specific user is 
closely determined by the quantity and quality of the training data. 
However, collecting sufficient training data on the target user is 
time-consuming and economically costly. Consequently, transfer 
learning [52] is hugely appropriate. Based on a substantial amount 
of underlying data and a trace amount of target user data, the train-
ing mode of transfer learning can improve the test performance of 
the network model on target user data. 

5.2.2 Transfer Learning. We consider recognition tasks and define 
𝑋 as the input space and 𝑌 = {0, 1, ..., 𝐿 − 1} as a set of 𝐿 possible 
labels. Then, we define two different distributions over 𝑋 × 𝑌 for 
the pre-collected underlying dataset and the target user dataset, 
called the underlying domain 𝐷𝑈 and the target domain 𝐷𝑇 respec-
tively. Our transfer learning algorithm is then provided with a large 
number of the underlying samples 𝑈 drawn 𝑖 .𝑖 .𝑑 from 𝐷𝑈 and a 
slightly small amount of the target user samples 𝑇 drawn 𝑖 .𝑖 .𝑑 from 
𝐷𝑇 . 

𝑈 = 𝑛 𝑛 {𝑢𝑖 = (𝑠𝑖 , 𝑙𝑖 )}    𝑖=1 ∼ (𝐷𝑈 ) (7)
′ 

𝑇 = 𝑡𝑖 = (𝑠𝑖 , 𝑁 𝑛 { 𝑙𝑖 )} 1 ∼ (𝐷  )  𝑖 =𝑛 +  𝑇 (8)

with  =    
′ 

𝑁 𝑛 + 𝑛 being the total number of training samples. 
The goal of our transfer learning algorithm is to build a classifier 
𝑐 : 𝑋 → 𝑌 with a low 𝑡 𝑎𝑟𝑔𝑒𝑡 𝑟 𝑖𝑠𝑘 

𝑅 (𝐷𝑇 𝑐) = 𝑃𝑟 (𝑐 (𝑠𝑖 ) ≠ 𝑙𝑖 ) (9) 
(𝑠𝑖 ,𝑙𝑖 )∼𝐷𝑇 

5.2.3 Network architectures. The architecture is shown in Fig. 9. 
Our network tasks a 3-channel human capacitance signal sequence 
of length 𝑆𝐿 as input. Here, each channel data of input sequence 
𝑠𝑖 is obtained from the capacitive sensors. The feature extractor 
uses a bidirectional long short-term memory [30] (LSTM) and a 
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Figure 9: Architecture of our recognition neural network based DANN. Figure 10: The Chinese character strokes. 

resnet block [29] to obtain the features 𝑓𝑖 extracted from the se-
quence 𝑠𝑖 . Meanwhile, the classifier composed of resnet block and 
Multilayer Perceptron layer takes feature 𝑓𝑖 as input and outputs 
an 𝐿-dimensional vector 𝑙𝑖 corresponding to the 𝐿 possible labels, 
while the domain discriminator based on FCN structure outputs 
a 𝑃 × 𝑄 matrix 𝑑𝑖 to distinguish signals on different domains 𝐷𝑈 
and 𝐷𝑇 . Then, We employ a 𝑑𝑜𝑚𝑎𝑖𝑛 − 𝑎𝑑𝑣𝑒𝑟 𝑠𝑎𝑟 𝑖𝑎𝑙 𝑛𝑒𝑢𝑟 𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 
(DANN) [21, 37] based transfer learning approach to train the afore-
mentioned network model. 

5.2.4 Chinese Character Recognition. Unlike the smaller number of 
categories, such as letters and numbers, the number of Chinese char-
acters poses a challenge for input recognition [5]. HandPad splits 
Chinese characters into corresponding stroke sequences according 
to the writing process, and then the Chinese character recognition 
can be split into two parts: stroke recognition and stroke sequence 
matching. There are 32 different strokes in Chinese characters, and 
certain pictorial similarities exist between the different strokes, 
such as vertical and vertical hooks, apostrophes, and tilts. Vision-
based Chinese character recognition methods classify strokes into 
five categories [5]. 

HandPad can mine other handwriting trajectory information 
from sequence signals based on human capacitance. For example, it 
can distinguish between apostrophes and tilts based on the direction 
of finger movement. Thus, we can perform more subtle recogni-
tion of strokes and thus optimize the stroke sequence matching 
of Chinese characters. We divide the strokes into 19 categories, as 
shown in Fig 10. The system merges the different strokes based on 
the following factors: similarity between strokes, the limitations 
of the three-channel sensor in terms of imaging, writing speed, 
and the effect of stroke trajectory deformation on data acquisition. 
The recognition of Chinese strokes is similar to the recognition of 
letters and numbers, and we implement the recognition of Chinese 
characters based on sequence matching. 

6 EVALUATION 

6.1 Experimental Setup 
The HandPad system consists of a capacitance sensor (TI FDC2214 
[20] with the excitation frequency of 10𝑀𝐻 𝑧) and an STM32 micro-
controller (sampling rate of 30𝐻 𝑧), where the capacitance sensor is 
used to measure the human capacitance in real-time. The capacitive 
sensor is the mutual capacitance sensor and the sensor operates in 

Figure 11: Experimental setup: TI FDC2214 sensor and STM32 
microcontroller are used to measure human capacitance, eas-
ily integrated into wearable devices; the finger cuff-based 
connection is easy to wear. 

shunt mode (passive sensing). The software part is the sampling of 
the sensor output using the STM32, the processing and recognition 
of the sensor data on the PC side (Lenovo LEGION Y7000). For 
security considerations, the operational parameters of the FDC2214 
(voltage range: 2.7-3.1V, current: 2.1mA) are below safety thresholds 
(10V and 20mA for continuous contact [2]). The system acquires the 
human capacitance signal from the three fingertips of the left hand. 
The user touches different positions of the left hand for keystroke 
input or slides on the three fingers for handwriting input. 
Keystroke. The keystroke interaction system consists of dataset 
collection for finger modeling and keystroke tests. The system sets 
the 14 keys on the back of the left hand (3 × 4 keyboard, "Delete" 
and "Enter"). The user touches these positions successively with the 
right-hand finger to build the dataset for finger modeling. Moreover, 
the user touches the same positions to collect the dataset for the 
keystroke test. For each key, the user collected data for 30 touches 
and each touch lasted for about 1𝑠 . 
Handwriting Recognition. The handwriting recognition system 
consists of the following steps: First, we invited 15 additional vol-
unteers, comprising 9 males and 6 females aged between 19 and 33 
(average age of 24.6, SD of 6.53), to collect the underlying dataset, 
which includes handwritten letters, numbers, and strokes of Chi-
nese characters. Then, we invited 10 participants as target users 
to evaluate HandPad, containing 4 males and 6 females with ages 
ranging from 22 to 29 (average age of 26.2). These volunteers and 
target users were asked to write the letters, numbers, and strokes 
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(a) Accuracy of keystrokes. (b) Accuracy of letters. 

(c) Accuracy of numbers. (d) Accuracy of Chinese strokes. 

Figure 12: Confusion matrix for the accuracy of keystrokes 
and handwriting inputs. 
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(a) Accuracy of Chinese character. 
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(b) Localization error of touch point. 

Figure 13: Micro Benchmarks of the HandPad system: (a) 
stroke distribution of Chinese characters and the correspond-
ing recognition accuracy; (b) positioning errors for different 
positions of the hand; 

20 times each. As shown in Fig. 11, the electrodes are held in place 
at the fingertip by a finger cuff to measure body capacitance, se-
curing the electrode-skin contact point and minimizing the effect 
of cable movement. The volunteers and target users wrote on the 
left hand with the finger of the right hand without restriction on 
the writing trajectory and speed. Based on the underlying dataset, 
we trained the handwriting recognition model for the target users 
using transfer learning. 

Furthermore, we made the stroke sequence dataset of Chinese 
characters for the stroke sequence matching, which contains 20795 
different Chinese characters and the corresponding stroke sequences. 
For each stroke number, the target users wrote 80 Chinese charac-
ters selected from the Chinese character dataset to build a test set 
of Chinese characters. 
Training details. The model was trained on one NVIDIA TESLA 
V100 for one hundred epochs with a batch size of 256. The sequence 
length of each channel was limited to 108, i.e. approximately 3.6𝑠 
of data sampled at a sampling rate of 30𝐻 𝑍 . The optimizer used 
is Adam with a learning rate of 1e-3, 𝛽1 = 0.9 and 𝛽2 = 0.999, a 

weight decay of 0. A learning rate schedular is used to decay the 
learning rate of each parameter group by 𝛾 = 0.2 every 50 epoch. 
Metrics. HandPad was assessed using the following metrics: 

Recognition Accuracy: The probability that input is correctly 
recognized in all relevant samples. 

Confusion Matrix: Each row of the matrix represents the pre-
dicted result, and each column represents the actual label. The 𝑖 th 
row and 𝑗 th column of the matrix indicate the proportion of the 𝑖 th 
input identified as the 𝑗 th input. 

6.2 Micro Benchmarks 
We first evaluated the recognition accuracy of 𝐻 𝑎𝑛𝑑𝑃𝑎𝑑 for both 
keystroke and handwriting inputs. As shown in Fig. 12, the recog-
nition accuracy of the keystroke is 100%, while the recognition 
accuracy of handwriting letters, numbers, and Chinese character 
strokes are 99.1%, 97.6%, and 94.6%. It can be seen that different 
interactions based on human capacitance are distinguishable. 

Fig. 13(a) shows the number of Chinese characters with differ-
ent numbers of strokes (histogram) and the recognition accuracy 
of Chinese characters with different numbers of strokes (scatter-
plot). Compared to stroke recognition, the recognition accuracy 
of Chinese characters has improved significantly, and the aver-
age accuracy is 97.9%. Furthermore, we evaluated the accuracy of 
the finger model for touch point localization. Fig. 13(b) shows the 
localization error of the samples in different contact points (1 to 
10 in Fig. 4). To further guarantee the accuracy of the keystrokes, 
the proposed keystrokes are chosen as 1, 3, 4, and 6 positions of 
three fingers to build a 3 × 4 keyboard, and 8 and 10 positions as 
"Delete" and "Enter". It can be seen that there is no deviation in the 
positioning results of these positions. 

6.3 Influence of System Parameters 
6.3.1 Influence of Sampling Rate. A high sampling rate raises the 
cost of hardware devices and the threshold for system deployment. 
In this experiment, we verified the impact of sampling rate on 
keystroke and handwriting recognition. As shown in Fig. 14(a), 
we evaluated the system performance in various cases from 10𝐻 𝑧 
to 100𝐻 𝑧. As the sample rate increases from 10𝐻 𝑧 to 30𝐻 𝑧, the 
recognition accuracy increases from 88.2% to 96.3%. As the sample 
rate continues to increase, the recognition accuracy plateaus. Thus, 
HandPad has a low sampling rate requirement and can be easily 
integrated into other devices as an interactive system. 

6.3.2 Influence of Training Set Size. To improve the universality 
of the system, HandPad reduces the burden of dataset collection 
for the target users with transfer learning. The dataset size of the 
target user still has an impact on the performance of the system. In 
this experiment, we verify the effect of the training set size on the 
recognition accuracy of the system in transfer learning. 

As shown in Fig. 14(b), the recognition accuracy of the system 
improves with the increase of the training set size. When the train-
ing set size increases from 1 to 3 for each input, the handwriting 
recognition accuracy for three types of handwriting interaction 
increases from 73.1% to 96.2%. However, when the sample exceeds 
3, system performance improvement is weakened. Considering 
the burden caused by dataset collection and the demand for high-
precision recognition, we set the training set size to 3 for each input. 
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(a) Influence of sampling rate. 
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(b) Influence of training set size. 
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(c) Influence of channel size. 
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(d) Influence of different users. 

Figure 14: Performance of the HandPad system under various factors includes: (a)-(c) the influence of different system 
parameters; and (d) the impact of distinct user identities. 

In contrast, without transfer learning, users are required to collect 
5 samples for each handwriting input to achieve similar accuracy, 
resulting in a 66.7% increase in the time cost of dataset collection. 
Although the number of samples collected for each category is 
reduced from 5 to 3. For the three handwriting inputs, the overall 
training set samples can be reduced by 110 samples. 

6.3.3 Influence of Channel Size. To minimize the hardware require-
ment of the system, HandPad uses the capacitive sensor of three 
channels to measure the human capacitance at three fingertips to 
mine the trajectory of finger movement. In this experiment, we 
attempt to further reduce the channel size of the capacitive signal. 
Specifically, we evaluated the performance in recognizing hand-
writing input using the signal of one and two channels. 

Fig. 14(c) shows the best performance of the system in both cases. 
It can be seen that channel size has a significant impact on system 
performance, and the recognition accuracy of one channel signal 
will seriously affect the efficiency of the interaction system. This 
is because the situation of one channel severely restricts access to 
information about lateral movement. As the training set increased, 
the recognition accuracy for the three types of handwritten input 
under different channels stabilized at 77.1%, 92.4%, and 97.6%. To 
ensure high recognition accuracy, we used three channels to acquire 
the capacitance signal. 

6.4 Influence of Other Factors 
6.4.1 Influence of Different Users. Recent researches [16, 60, 67] 
confirmed the differences in human capacitance between users, 
mainly in the response of the human body to different frequency 
signals. Therefore, we need to evaluate the effect of different users 
on the recognition performance to demonstrate the system’s ubiq-
uitousness. For the 10 target users, we tested the system at three 
different times, spaced two days apart. 

Although different users usually differ in terms of writing trajec-
tory, writing speed, etc., the system builds recognition models for 
these target users. As shown in Fig. 14(d), we compare the recogni-
tion accuracy of keystrokes and handwriting input for these users. 
It can be seen that the training process based on transfer learn-
ing can fit the handwriting styles of different users with a limited 
training set size. Moreover, the different time points do not affect 
the recognition accuracy of the system. First, the writing habits 
of different users are relatively stable; second, HandPad utilizes 
human capacitance at different contact points for recognition, and 
overall changes in skin properties do not affect the differences in 
measurements between different contact points. 

6.4.2 Influence of Different Postures. We evaluate the accuracy 
of handwriting and keystroke recognition for the target users in 
various postures: walking, standing, and sitting. Notably, these users 
did not require any supplementary calibration while changing their 
motion postures. The experimental results, which are shown in 
Fig 15(a), illustrate that the HandPad system is resilient to variations 
in user motion. In this way, it can be ensured that the change 
in capacitance is uniquely derived from the method hair of our 
proposed modulation of human capacitance. Although the user’s 
movement does cause a change in the extrinsic capacitance, it is very 
weak compared to the magnitude of the modulation of the intrinsic 
capacitance, which does not affect the handwriting recognition 
accuracy of the system. 

6.4.3 Influence of Different Environment. The recognition accuracy 
of HandPad in two different environments is shown in Fig. 15(b) 
and the system does not need to be retrained for different environ-
ments. The conference room contains a 70-inch TV and one central 
air conditioner, while the office has 42 computer-screen pairs, 4 
microwaves, 11 laptops, and 6 central air conditioners, leading to 
higher EM noise. The effect of environmental changes on input accu-
racy is minimal in both cases. Moreover, temperature affects human 
capacitance due to shifts in body tissue permittivity [54]. Handwrit-
ing input, based on normalized capacitance, remains stable despite 
temperature changes. Keystroke input, using absolute capacitance, 
functions properly after a quick recalibration when experiencing 
significant temperature changes. The calibration mechanism re-
quires only 2 seconds. Experimental results indicate that when 
hand temperature varies from 25◦𝐶 to 36◦𝐶 , our system achieves a 
minimum keystroke accuracy of 71.2% and handwriting accuracy 
of 96.3% without recalibration. Following recalibration, the min-
imum accuracies improve to 99.8% for keystrokes and 97.7% for 
handwriting as shown in Fig. 15(c). 

6.4.4 Influence of Different Fingers and Hands. Besides the temper-
ature, hand moisture significantly influences human capacitance. 
Calibration ensures high-precision input even after handwashing. 
As shown in Fig. 15(d), without recalibration, accuracy declines to 
54.2% for keystrokes and 71.6% for handwriting when hands are 
wet. Recalibration restores accuracy to 98.9% for keystrokes and 
97.1% for handwriting. 

Furthermore, we verified that the trend of the human capaci-
tance with touch position is similar between different fingers in the 
feasibility experiment. In this experiment, we further verified the 
accuracy of handwriting input with different fingers. We invited 
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(c) Influence of different temperatures. 
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(d) Influence of hand moisture. 

Figure 15: Performance of the HandPad system under various factors includes: (a) the influence of different postures (b) the 
influence of different postures (c) the influence of different temperatures. (d) the influence of hand moisture. 
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(a) Influence of different fingers. 
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(b) Influence of different hands. 

Figure 16: Impacts on system performance when deploying 
HandPad on different fingers or different hands. 

all the target users for the evaluation, and each target user was 
instructed to use the index (Finger 1), middle (Finger 2), and ring 
(Finger 3) fingers of their right hand to touch the back of their 
left hand while writing. As shown in Fig. 16(a), stable handwriting 
interaction can be achieved by using different fingers. In addition, 
we experimented the handwriting recognition on different hands 
and verified the influence on system performance. For different 
handwriting inputs, target users were asked to collect the training 
data on the left and right hand respectively. As shown in Fig. 16(b), 
the system maintained a stable handwriting recognition accuracy. 
Therefore, the keystroke and handwriting interaction system based 
on human capacitance is robust and can adapt to different users. 

7 DISCUSSION 
Limitation. The recognition of Chinese characters in HandPad is 
achieved through stroke sequence matching, and the method based 
on sequence matching cannot distinguish between Chinese charac-
ters with the same stroke sequence. The language processing model 
based on transformer [61] can combine contextual information to 
identify the correct handwriting input in the current context. 

Furthermore, we developed distinct models for the recognition of 
letters, numbers, and Chinese characters, achieving high accuracies 
of 99.1%, 97.6%, and 97.9%, respectively. While a unified inference 
pipeline could potentially reduce storage requirements, training 
a single model for the combined task of recognizing numbers, let-
ters, and strokes resulted in an accuracy of 92.6%, representing a 
significant decrease in performance. 
Future Work. We verified the positioning of touch points based on 
the finger model, and the human capacitive signal of three chan-
nels can reflect the trajectory of finger movements. Moreover, the 
slight deformation of the trajectory does not affect the recognition 
of handwriting letters, numbers, and strokes. Therefore, in future 

work, we will further extend the system to other handwriting in-
puts, such as Japanese, Korean, and other languages. Furthermore, 
PIN-based password [46] input can also be implemented on three 
fingers based on the finger model. On the other hand, the three chan-
nels limit the accuracy of horizontal localization and the system is 
only able to identify which finger is touched. However, combined 
with contextual information, it is worth trying to reason about the 
movement trajectory from the coarse-grained 2D position. We will 
attempt to generate fine-grained trajectories using methods such 
as diffusion model [13] in future work. 

Moreover, we believe a wireless version of our system is feasible. 
Using short-range wireless technologies like Bluetooth, capacitive 
data can be transmitted from fingertips to wearable devices such 
as smartwatches. Advances in technology have produced compact 
Bluetooth chips, like the nrf52832 [57](4mmx4mm), and small capac-
itive sensor chips, like the TI FDC2214 (3mmx3mm). By employing 
flexible circuit board technology, we can integrate the capacitance 
chip, electrode sheet, Bluetooth SoC chip, and a miniature arc bat-
tery [24] into a fingertip cot design. Insights from prior work [48, 72] 
on sensor integration into wearables inform our move to develop a 
wireless smart finger-cap device, a focus for future research. 

Meanwhile, temperature and moisture sensors are highly effec-
tive for monitoring the system environment and prompting users 
to recalibrate, thereby ensuring accuracy and reliability, which is 
an important aspect of future work. 

8 CONCLUSION 
This paper presents a human-computer interaction system based 
on human capacitance. The proposed HandPad system uses the 
capacitive sensor of three channels to measure the human capaci-
tance at the fingertips and enables the interaction with finger touch 
on the left hand. The system mines the movement information of 
the touch point from the human capacitance signal to achieve the 
keystroke and handwriting input. The system uses transfer learning 
to build a recognition model for the target user, which reduces the 
burden of training set collection. The experiments demonstrate the 
feasibility of HandPad for human-computer interaction, and the 
system can meet the text input requirements in different scenarios. 
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APPENDIX 

A LINE TEST 
The line drawing test is a common method used in 2D localization. 
To verify the feasibility of the writing pad, the volunteers were 
asked to slide on the surface of three fingers in two directions. As 
HandPad only uses a three-channel capacitive sensor, the three-
channel results cannot be directly compared to the two-dimensional 
spatial position. We tried to visualize the trajectory of the touch-
points by adding a timeline. As shown in Fig. 17(a) and Fig. 17(b), we 
tested two movements, an oblique upward swipe and a horizontal 
swipe. It can be seen that when sliding obliquely upwards, the posi-
tion of the contact point gradually increases in the three channels; 
when sliding horizontally, the position of the contact point remains 
stable. Based on the above experiments, we attempted to extend 
the interaction system with handwriting input, including letters, 
numbers, and Chinese characters. 
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(b) Position the finger slide. 

Figure 17: The line test: (a) and (b) show the capacitance 
change curves captured by the three electrodes during cross-
finger writing. 

B NETWORK ARCHITECTURES 
We detail each network module of our architecture in the subse-
quent paragraphs. 

Feature Extractor. For the input sequence 𝑠𝑖 , we first use a bidi-
rectional long short-term memory (LSTM) to find and exploit long-
range dependencies in the data. The number of features in the 
hidden state is 256, and the number of layers is 2. Next, after the 
𝐵𝑎𝑡𝑐ℎ𝑁 𝑜𝑟𝑚 − 𝐷𝑟 𝑜𝑝𝑜𝑢𝑡 − 𝑅𝑒𝐿𝑈 layers, we use two fully convolu-
tional network-based (FCN-based) residual network (ResNet) blocks 
to further extract sequence features. The ResNet block consists of 
three convolution blocks with a structure of 𝐶𝑜𝑛𝑣 − 𝐵𝑁 − 𝑅𝑒𝐿𝑈 
where the first 𝐶𝑜𝑛𝑣 downsamples by a factor of 2. The convolu-
tional layers within the first ResNet block have 128 filters with a 
kernel size of 1 × 1, 3 × 3, 1 × 1. The convolutional layers within the 
second ResNet block have 256, 256, 64 filters. 

A separate convolutional layer is applied to the input of the 
ResNet layer (the number of 1 × 1 filter for two ResNet blocks is 128 
and 64), and the output of the ResNet block is the sum of the above 
two components. These ResNet blocks weaken the degradation 
problem caused by over-deepening of the network during feature 
extraction, allowing more essential features of the sequence to be 
preserved. Then, we can obtain the features 𝑓𝑖 extracted from the 
sequence 𝑠𝑖 . 

Classifier. The classifier is a network consisting of two ResNet 
blocks, a pooling layer, and a fully connected layer. The structure 
of the ResNet block is the same as in the feature extractor, and the 
𝑓𝑖 is further integrated and processed by these ResNet blocks. 

Eventually, the fully connected layer with modules of the form 
𝐿𝑖𝑛𝑒𝑎𝑟 − 𝑅𝑒𝐿𝑈 outputs the possibility 𝑙𝑖 that the sequence belongs 
to each label. Specifically, the layer is a Multilayer Perceptron with 
one hidden layer with 128 units and an output layer with the same 
number of units as labels. 

Domain Discriminator. Domain discriminator is an FCN-based 
structure with three 𝐶𝑜𝑛𝑣 − 𝐵𝑁 − 𝑅𝑒𝐿𝑈 layers, where the con-
volutional layers have 32 1 × 1,16 3 × 3, 8 1 × 1 filters and stride 
2, 2, 2 respectively. After the last convolutional layer, a pooling layer 
is applied to downsampling, followed by a 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 function. The 
𝑆𝑖𝑔𝑚𝑜𝑖𝑑 function is applied to all elements of input and will re-scale 
them so that every element in 𝑑𝑖 lies in the range [0, 1]. For the 
domain discriminator, the output 𝑑𝑖 converges to 1 when the input 
feature 𝑓𝑖 = 𝐺 𝑓 (𝑠𝑖 , 𝜃 𝑓 ), 𝑠𝑖 ∈ 𝑢𝑖 , while the output 𝑑𝑖 converges to 0 
when the input feature 𝑓𝑖 = 𝐺 𝑓 (𝑠𝑖 , 𝜃 𝑓 ), 𝑠𝑖 ∈ 𝑡𝑖 . 

C MODEL OPTIMIZATION AND INFERENCE 
We use a model based on DANN to accomplish the above goal. 
As shown in Fig. 9, the model has three main parts: (i) Feature 
Extractor. (ii) Classifier. (iii) Domain Discriminator. 

Namely, let 𝐺 𝑓 (·, 𝜃 𝑓 ) be the feature extractor that maps each 
input human capacitance signal sequential 𝑠𝑖 to a deep feature 
representation 𝑓𝑖 , with parameters 𝜃 (· )𝑓 . Also, let 𝐺𝑐 , 𝜃𝑐  be the 
classifier that receives the output of the feature extractor 𝑓𝑖 and 
computes the network’s label prediction 𝑙𝑖 , with parameters 𝜃𝑐 , 
while 𝐺𝑑 (·, 𝜃𝑑 ) corresponds to the discriminator that is responsible 
for the computation of domain predictions 𝑑𝑖 , with parameters 𝜃𝑑 . 
Meanwhile, we use 𝑑𝑖 to define whether a training sample 𝑢𝑖 or 𝑡𝑖 
belongs to the underlying domain or the target domain. 

We define the label prediction loss and the domain prediction 
loss respectively by the 𝐶𝑟 𝑜𝑠𝑠𝐸𝑛𝑡 𝑟𝑜 𝑝𝑦 loss 

𝑖 L𝑐 (𝜃 𝑓 , 𝜃 ˆ
𝑐 ) = L𝑐 (𝑙𝑖 , 𝑙𝑖 ) = L𝑐 (𝐺𝑐 (𝑓𝑖 ; 𝜃𝑐 ), 𝑙𝑖 ) (10) 

= L𝑐 (𝐺𝑐 (𝐺 𝑓 (𝑠𝑖 ; 𝜃 𝑓 ); 𝜃𝑐 ), 𝑙𝑖 ) 
and the 𝐵𝐶𝐸𝑊 𝑖𝑡ℎ𝐿𝑜𝑔𝑖𝑡𝑠 loss 

𝑖 L (𝜃 𝑓 , 𝜃𝑑 ) = L )𝑑 (𝑑𝑖 , 𝑑𝑖  = L 𝑑 (𝐺𝑑 (𝑓𝑖 ; 𝜃𝑑 𝑑 ), 𝑑𝑖 ) (11) 
= L𝑑 (𝐺 (𝑑 𝐺 𝑓 (𝑠𝑖 ; 𝜃 𝑓 ); 𝜃𝑑 ), 𝑑𝑖 ) 

The training of our recognition model is performed by optimizing 
the overall loss function: ∑︁𝑛  

 L(  𝑓 , 
𝑖 𝑖𝜃 𝜃𝑐 , 𝜃 )𝑑  = (L  (𝑐 𝜃 )𝑓 , 𝜃𝑐  + 𝜆 L (𝜃 𝑓 , 𝜃 )𝑑 𝑑 )+ 

𝑖 =1 
(12) ∑︁𝑁  

𝛽 𝑖 𝑖 (L𝑐 (𝜃 𝑓 , 𝜃𝑐 ) + 𝜆L (𝜃 𝑓 , 𝜃𝑑 𝑑 )) 
𝑖 =𝑛 +1 

where the parameter 𝛽 ∈ [0, 1] is scale-related to the size of the 
training underlying dataset and target user dataset. 

The parameters of the whole network are optimized via gradient 
back-propagation during an iterative training process that consists 
of three successive update rules: 
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Figure 18: Visualization of handwriting numbers: the blue, yellow, and red lines indicate the distance from the contact point to 
the root of the ring finger, middle finger, and index finger of the left hand respectively. 

• Optimization of the feature extractor with learning rate 𝜇 𝑓 : 

𝜃 𝑓 ← 𝜃 𝑓 − 𝜇 𝑓 ( 
𝜕 L𝑖 

𝑐 

𝜕𝜃 𝑓 
− 𝜆 

𝜕L 𝑖 
𝑑 

𝜕𝜃 𝑓 
) (13) 

• Optimization of the classifier with learning rate 𝜇𝑐 : 

𝜃𝑐 ← 𝜃𝑐 − 𝜇𝑐 
𝜕L𝑖 

𝑐 

𝜕𝜃𝑐 
(14) 

• Optimization of the domain discriminator with learning rate 𝜇𝑑 : 

𝜃𝑑 ← 𝜃𝑑 − 𝜇𝑑 𝜆 
𝜕L 𝑖 

𝑑 

𝜕𝜃𝑑 
(15) 

The update rules Eq.13 and Eq.15 work in an adversarial way: 
with Eq.15, the parameters 𝜃𝑑 are updated for the domain predic-
tion task (by minimizing L𝑑 ). By finding optimized 𝜃𝑑 , the domain 
discriminator has a solid capability to distinguish the features 𝑓𝑖 
extracted from the sequences 𝑠𝑖 from domain 𝐷𝑈 and domain 𝐷𝑇 . 
Furthermore, with Eq.13, the parameters 𝜃 𝑓 are updated to ensure 
that the features extracted by the feature extractor over the two 
domains 𝐷𝑈 and 𝐷𝑇 have similar distributions (by maximizing 
L𝑑 ). This optimization process makes the extracted features 𝑓𝑖 as 
indistinguishable as possible for the domain discriminator, thus 
resulting in the domain-invariant features. Meanwhile, as shown 
in Fig. 9, such a gradient reversal optimization process can be ac-
complished by a 𝑔𝑟 𝑎𝑑𝑖𝑒𝑛𝑡 𝑟 𝑒𝑣𝑒𝑟𝑠𝑎𝑙 𝑙𝑎𝑦𝑒𝑟 (GRL) which requires no 
parameter update. The parameter 𝜆 ∈ [0, 1] controls the intensity 
of the adversarial component. 

D STROKE SEQUENCE MATCHING 
ALGORITHM 

The target user writes a single Chinese character and a series of 
stroke sequences 𝑆 = {𝑠 𝑗 }𝑘𝑗 =1 is captured by the capacitive sensor. 
Then, the models mentioned above (feature extractor and classi-
fier) calculate the stroke label probability vector 𝑙 𝑗 for each signal 
sequence 𝑠 𝑗 ∈ 𝑆 . In the database of the HandPad system, Chinese 
characters are stored as a tuple (ℎ𝑖 , 𝐶𝑖 ) where ℎ𝑖 corresponds to 
the 𝑈 𝑇 𝐹 − 8 encoding of the 𝑖 -th character and 𝐶𝑖 = {𝑐𝑖 𝑗 }𝑘𝑗 =1 repre-
sents its stroke sequence vector. With all the stroke label possibility 

vector 𝐼 = {𝑙 𝑘
𝑗 } 𝑗 =1 as input, HandPad used the stroke sequence 

matching algorithm to find the most accurate matching of Chinese 
characters from the database as shown in Algo. 1. 

Algorithm 1 Stroke Sequence Matching Algorithm 

Input: 𝐼 = 𝑘{𝑙𝑖 }𝑖 =1 
Output: Chinese characters ℎ 
1: Initialize Φ with all tuples (ℎ𝑖 , 𝐶𝑖 ) that satisfy the condition 

that 𝑙𝑒𝑛𝑔𝑡ℎ (𝐶𝑖 ) = 𝑘 . 
2: Obtain the most likely stroke input sequence 𝐶 = {𝑐 𝑘

𝑗 } 𝑗 =1 of 
target user where 𝑐 𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑙 𝑗 ). 

3: Initialize Ψ of the same length as Φ to record the matching 
degree between each 𝐶𝑖 ∈ Φ and 𝐶 . 

4: for all (ℎ𝑖 , 𝐶𝑖 ) ∈ Φ do 
5: Compare 𝑐𝑖 𝑗 ∈ 𝐶𝑖 and 𝑐 𝐶 

𝑗 ∈ ˆ𝑗 case-by-case. 
6: Ψ[𝑖 ] ← (𝑀 𝑁𝑖 , 𝑝𝑖 ) where 𝑀 𝑁𝑖 is the number of matching  

elements and 𝑝𝑖 = 𝑙 𝑗 [𝑐𝑖 𝑗 ] 
𝑐𝑖 𝑗 !=𝑐 𝑗 

7: In particular, 
8: if 𝑀 𝑁𝑖 = 𝑘 then 
9: return ℎ𝑖 
10: end if 
11: end for 
12: return ℎ𝑖 whose corresponding Ψ[𝑖 ] has the highest 𝑀 𝑁𝑖 and 

has the maximum 𝑝𝑖 if others have the same 𝑀 𝑁𝑖 as it. 

E USER STUDY 
In this section, we examine the usability and workload of HandPad. 
We invited 40 participants to use each application for 20 minutes per 
day for one week. We used a standard methodology based on the 
System Usability Scale (SUS) [58] to study the user experience with 
11 questions. Specifically, the questions in the questionnaire have 
five response options ranging from "strongly agree" to "strongly 
disagree". The questionnaire is as follows: 
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Strongly Disagree (-2) Disagree (-1) Not sure (0) Agree (1) Strongly Agree (2) Average Rating 
Q1 24 9 4 3 0 -1.35 
Q2 1 3 5 10 21 1.175 
Q3 0 4 3 8 25 1.35 
Q4 0 2 5 11 21 1.275 
Q5 1 3 7 10 19 1.075 
Q6 7 26 4 1 2 -0.875 
Q7 0 1 3 9 27 1.55 
Q8 27 5 5 2 1 -1.375 
Q9 0 2 4 14 20 1.3 
Q10 4 16 10 8 2 -0.7 
Q11 1 2 6 14 17 1.1 

Table 1: The result of questionnaire. 

About you 
In this section, you will be presented with a number of questions 
about yourself and your opinions and attitudes. 

1 Your gender: 
□ Female 
□ Male 

2 How old are you? 
□ Below 18 
□ 18-24 
□ 25-34 
□ 35-44 
□ 45-54 
□ 55-64 
□ Above 65 

About the user experience 
In this section, you will be presented with a number of questions 
about your opinions and attitudes towards Handpad. 

After completing the registration and login tasks, please 
rate your opinions toward Handpad with the following as-
pects. 

1 I find the system very uncomfortable to wear 
Strongly Disagree (-2) □—□—□—□—□ Strongly Agree (2) 

2 I think I would like to use the system regularly 
Strongly Disagree (-2) □—□—□—□—□ Strongly Agree (2) 

3 I think the system is easy to use 
Strongly Disagree (-2) □—□—□—□—□ Strongly Agree (2) 

4 I think the system would meet most people’s writing 
needs 
Strongly Disagree (-2) □—□—□—□—□ Strongly Agree (2) 

5 I think the system can accommodate the writing 
habits of different users 
Strongly Disagree (-2) □—□—□—□—□ Strongly Agree (2) 

6 I would need a long time of training to use this system 
Strongly Disagree (-2) □—□—□—□—□ Strongly Agree (2) 

7 I think most people learn to use the system quickly 
Strongly Disagree (-2) □—□—□—□—□ Strongly Agree (2) 

8 I find the system very cumbersome to use 
Strongly Disagree (-2) □—□—□—□—□ Strongly Agree (2) 

9 I think it’s acceptable to collect 3 sample for each 
input 
Strongly Disagree (-2) □—□—□—□—□ Strongly Agree (2) 

10 I think it’s acceptable to collect 5 sample for each 
input 
Strongly Disagree (-2) □—□—□—□—□ Strongly Agree (2) 

11 I think it is beneficial to reduce the amount of data 
collected. 
Strongly Disagree (-2) □—□—□—□—□ Strongly Agree (2) 

Please give your advice here. 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Q10Q11
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Figure 19: User study of the HandPad system. 

The results of the questionnaire are presented in the Tab. 1 and 
Fig. 19(a). The majority of participants in the questionnaire ex-
pressed positive opinions about the system, highlighting its ease of 
use. 

For the workload indicator, we asked all participants to fill out 
the NASA Task Load Index [59] to evaluate HandPad, including 
Mental Demand (MD), Physical Demand (PD), Temporal Demand 
(TD), Performance (P), Effort (E), and Frustration (F). As shown in 
Fig. 19(b), both systems scored low (below 5) in terms of mental, 
physical, and time demands. However, HandPad performed better 
overall than the system without DANN (19 VS 8). 21 participants 
indicated that the advantage of transfer learning was not significant 
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when handwriting input was limited, which means that the symbols 
to be input included only numbers. The users only need to collect 
the dataset of numbers 0-9 for training, which is acceptable for most 
users. However, when multiple input modalities were involved, 

such as letters and Chinese character strokes, the total number of 
samples that needed to be collected by the system without DANN 
was significantly higher, and the excessively long sample collection 
time was frustrating. 
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