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ABSTRACT
Non-invasive continuous glucose monitoring for diabetes pa-
tients remains challenging despite ongoing interest. This pa-
per presents CGMM, a novel non-invasive wireless glucose
monitoring system integrated into wearable devices. It fea-
tures a specially designed metasurface that couples with the
wearable’s antenna and tissue fluid beneath the skin, ampli-
fying frequency response changes caused by subtle glucose
concentration variations. To address individual tissue variabil-
ity and optimize the passive metasurface design, we develop
a tunable metasurface and a one-shot calibration method to
obtain the impedance for optimal resonance in glucose sens-
ing environments with unknown parameters. The calibrated
impedance is then used for the inverse design and fabrication
of an economical passive metasurface. We implement proto-
types of CGMM and conduct extensive experimental evalua-
tions. In human experiments involving ten participants using
the prototype with LibreVNA, the overall performance is
quantified with relative errors ranging from -5.02% to 6.93%
and an RMSE of 9.65 mg/dL.

*Yezhou Wang, Jiting Liu, and Ruichun Ma did this work as interns at
Microsoft Research Asia
†Ju Ren and Lili Qiu are the corresponding authors.
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1 INTRODUCTION
Diabetes is a prevalent chronic disease with significant im-
pacts on the individuals’ quality of life [2]. Continuous glu-
cose monitoring (CGM) remains vital for patients to under-
stand their condition, prevent hypoglycemic or hyperglycemic
events, and evaluate medication effectiveness [5, 6, 46]. Com-
mon techniques use electrochemical methods to convert glu-
cose concentration into electrical signals [60]. However, these
require invasive procedures skin-pricks [8], causing pain, in-
convenience, and potential infection.

Non-invasive glucose monitoring using spectroscopy has
been validated in prototypes and theory, as glucose exhibits
characteristic absorption peaks in the infrared spectrum. Al-
though companies like Samsung and Apple have launched
smartwatches, these devices have not yet achieved this ca-
pability [11, 24, 45]. Spectroscopy-based technology faces
numerous challenges, such as being highly sensitive to noise
and susceptible to ambient light interference, necessitating the
use of complex black boxes to mitigate these effects [39, 76].
Additionally, it is affected by factors like skin tone [72]. Glu-
cose molecules affect not only the optical spectrum but also
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the dielectric spectrum [67]. Changes in glucose levels can al-
ter the permittivity of blood and surrounding tissue fluid, also
known as interstitial fluid (ISF), which affects the propagation
of electromagnetic (EM) waves. This provides a theoretical
basis for using wireless signals to monitor blood glucose
levels. Therefore, we are exploring the electrophysical prop-
erties of glucose to advance the development of non-invasive
blood glucose measurement in wearable devices. Our goal
is to leverage existing wireless frequency resources, such as
Wi-Fi or Ultra-Wideband (UWB), to develop a cost-effective,
non-invasive, and easily deployable CGM solution.

Variations in glucose concentration, such as a change of
100 mg/dL, have minimal effects on the permittivity of blood
and tissue fluid. In the Wi-Fi and UWB bands, each 100 mg/dL
change in glucose concentration results in less than a 0.001 dB
change in amplitude and a 0.01° change in phase of the
antenna’s reflected frequency response. Recent research in
wireless liquid sensing typically requires containers of suf-
ficient size and/or thickness to detect propagation feature
changes [14, 19, 61]. Other studies use RFID tags to iden-
tify liquid types but do not offer fine-grained concentration
sensing [27, 70]. Therefore, inferring glucose levels using
wireless signals presents a significant challenge. This moti-
vates us to develop a system that can “amplify” changes in
wireless signal frequency responses using metasurfaces.

In this paper, we propose an innovative non-invasive CGM
method called CGMM. As shown in Figure 1, we place the
designed passive metasurface behind a wearable device on
the user’s arm or wrist. A metasurface can couple with the
underlying tissues, such as fat and muscle, converting subtle
changes in glucose concentration in the tissue fluid into de-
tectable changes in the antenna’s reflected frequency response.
Compared to transmission response, we choose reflection re-
sponse because it only requires equipment deployment on one
side and can even be implemented with a single antenna.

The essence of CGMM is to design and optimize a meta-
surface that is highly sensitive to the subtle permittivity vari-
ations in tissues caused by glucose changes. Our optimized
metasurface should achieve strong resonance with the human
tissues. At this resonant frequency, due to impedance match-
ing by the metasurface, EM waves can propagate efficiently
with minimal reflection. Consequently, subtle permittivity
changes caused by glucose concentration variations can lead
to shifts in the resonant frequency. Designing such a meta-
surface requires an accurate optimization model that includes
the user’s detailed tissue parameters, such as thickness and
permittivity of each tissue layer. However, obtaining the thick-
ness by imaging techniques (such as X-rays and MRI) and
measuring permittivity through electrophysical methods are
cumbersome and even somewhat impractical for the users.
Therefore, optimizing a passive metasurface in environments
with unknown parameters is highly challenging.

Figure 1: CGMM enables the continuous monitoring of
glucose changes by utilizing the frequency response of
wearable antennas

To address this challenge, we propose a one-shot calibra-
tion process to optimize the passive metasurface. Specifically,
we design a tunable metasurface and adjust variable capacitors
to optimize resonance between the metasurface and human
tissues with uncertain parameters. Each user requires the tun-
able metasurface only once for calibration, after which it can
be converted into a personalized passive metasurface. We
use a lumped element planar capacitor template to design
the passive metasurface, ensuring the metasurface units are
much smaller than half the wavelength at the operating fre-
quency. This is crucial since antennas in wearable devices
usually operate below 10 GHz. In our study, the metasurface
units measure 5 mm×5 mm. Arranged periodically, the fi-
nal metasurface can fit various small wearable devices, such
as 4 cm×4 cm smartwatches. Our final system employs pas-
sive metasurfaces that do not require batteries or additional
circuits, allowing for easy plug-and-play deployment.

We fabricate a tunable metasurface prototype for one-time
calibration and design various experimental scenarios with
unknown parameters to evaluate CGMM. In each experi-
ment, we use the tunable metasurface to obtain calibration
impedance parameters and then create corresponding passive
metasurfaces for testing glucose estimation performance. We
use the FreeStyle Libre CGM sensor [41] to obtain accurate
glucose concentrations in the tissue fluid. A radio measure-
ment device, specifically a portable Vector Network Analyzer
(VNA) or a portable Software-Defined Radio (SDR), is used
to measure the antenna’s reflected frequency response. We
conduct human trials involving ten volunteers who consume
high-sugar beverages or foods to alter their blood glucose
levels. Both the CGMM prototypes and CGM sensors are at-
tached to the volunteers’ arms to measure tissue fluid glucose
changes over three hours. The experimental results indicate
that our proposed system has an RMSE of approximately
9.65 mg/dL using the prototype with LibreVNA. To demon-
strate the scalability and plug-and-play nature of our designed
metasurface, we attach the metasurface to the RX antenna of
a commercial UWB radar module, i.e., SLMX4 [58], thereby
converting it into a CGMM prototype. We validate its glucose
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estimation performance and obtain an RMSE of 20.53 mg/dL;
the experimental results are also promising.

Our major contributions are as follows:

• To the best of our knowledge, CGMM is the first system
to enable non-invasive continuous glucose monitoring in
wearables using metasurface technology.

• Our proposed CGMM features an optimized passive meta-
surface that amplifies subtle glucose concentration changes
into detectable variations in the reflection frequency re-
sponse of the wearable antenna.

• We propose a tunable metasurface for one-shot calibration
to address the issue of unknown human tissue parameters.
The calibrated impedance parameters guide the develop-
ment of a personalized passive metasurface.

• In IRB-approved human trials, our system achieves an av-
erage glucose sensing error of 9.65 mg/dL with a proto-
type featuring an external antenna and LibreVNA, and
20.53 mg/dL with a prototype using our metasurface with
a commercial UWB radar device.

2 RELATED WORK
2.1 Glucose Sensing Methods
2.1.1 Invasive glucose sensing. Invasive glucose moni-
toring methods, such as fingerstick blood sampling [37] and
subcutaneous implantation [32], rely on electrochemistry prin-
ciples to detect blood glucose levels. Most glucometers use
oxidase to react with glucose molecules in blood samples,
converting glucose concentrations into electrical signals [30].
Continuous glucose monitoring products use implanted sen-
sors with oxidase in subcutaneous tissue fluid [50], reducing
the need for finger pricks. However, this method is costly and
powered, as the sensors need to be replaced every two weeks,
and may also cause skin irritation [1]. The academic com-
munity has extensively researched implantable blood glucose
sensors based on EM resonance properties [9, 17, 38]. Nev-
ertheless, these methods require sensor implantation, which
can also lead to discomfort and increased costs.

2.1.2 Non-invasive glucose sensing. Spectroscopy based
methods: Glucose molecules can absorb spectra at specific
frequency ranges due to their characteristic vibration and
rotation modes [47, 71]. Relevant researches and commer-
cial products measure blood glucose levels by transmitting
lasers into subcutaneous tissue and analyzing the capillary
spectrum [4, 12, 39, 48, 76]. These methods commonly use a
black box to enclose testing components and body parts, like
fingers, to block ambient light interference. Consequently, cur-
rent spectroscopic methods are limited to snapshot measure-
ments because these bulky boxes are difficult to incorporate
into wearable devices and continuous monitoring systems. Ad-
ditionally, optical-based sensing methods are also sensitive to

(a) Working principle of CGM [8] (b) Using antenna to sense glucose

Figure 2: Left is an invasive CGM sensor; right is a
non-invasive setup using an antenna to measure glucose
changes in tissue fluid

the skin characteristics [72]. Some researches and the existing
commercial wearable products utilize PPG signals combined
with machine learning algorithms for blood glucose moni-
toring [13, 15, 34, 55, 75]. PPG infers blood glucose levels
indirectly through changes in blood flow rather than measur-
ing glucose molecules directly. PPG signals are affected by
factors like blood flow, vascular condition, heart rate, and
external interference, resulting in no direct correlation with
blood glucose concentration. This limits the accuracy and
reliability of using PPG alone for glucose measurement [42].
Thus, even with advanced signal processing and deep learning
algorithms, it is still challenging to accurately obtain glucose
concentrations from PPG [7, 18].

Dielectric spectrum based methods: Glucose variations al-
ter the permittivity of the blood and tissue fluid, allowing
estimation of glucose concentration through analysis of EM
signal characteristics (e.g., attenuation, phase changes) [31].
Compared with spectroscopy, dielectric spectrum can be ob-
tained using existing radio frequency (RF) resources (e.g.,
Wi-Fi and UWB) in wearable and mobile devices. But the
RF hardware on wearables and mobile devices cannot cap-
ture these particularly small changes in EM signals. Some
commercial products utilize the customized hardware to mea-
sure dielectric spectrum changes, i.e., EM signal attenuation,
in the fingertip or earlobe for glucose monitoring. However,
these products are costly (e.g., GlucoTrack costs $2,120 [35]).
Some research utilizes dielectric spectrum sensing to mon-
itor glucose levels. [29, 52] design wearable EM resonant
sensors placed near the arm or lower leg for blood glucose
monitoring. However, these designs require deploying cables
and antennas of half-wavelength size (e.g.,∼6 cm at 2.4 GHz),
which is impractical for users. Omer et al. propose a mmWave
blood glucose detection system using the Soli mmWave Radar
board to sense glucose in a test tube at 100 mg/dL intervals
[51, 59]. This system analyzes reflected signals for concentra-
tion classification using machine learning, making it highly
sensitive to the environment. Metasurface is a 2D EM meta-
material [43, 44, 53, 64, 68], Jun et al. explore terahertz and
metasurface-based glucose sensing but provide only simu-
lation results without developing an actual system for val-
idation [73]. Other researchers use sub-terahertz radiation
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Figure 3: Permittivity values of glucose solutions at dif-
ferent glucose concentrations with a background of pure
water. These data are fitted using the single pole Cole-Cole
model and the measured data from [67]

(near 0.1 THz) for glucose solution reflectance measurement
[63, 66, 73]. However, THz and sub-THz devices are costly
and not available on mobile devices.
Our work: Our proposed CGMM is non-invasive and lies in
the careful design of the metasurface. We provide a demon-
stration of the feasibility of noninvasive blood glucose mea-
surement in wearable scenarios by utilizing RF channels and
metasurface technology.

2.2 Liquid Sensing with RF Signals
Several studies have leveraged the propagation characteristics
of wireless signals in liquids to estimate their type and con-
centration. Ashutosh et al. develop LiquID [14], a low-cost
liquid recognition system based on the relationship between
the attenuation factor and the dielectric constant, using UWB
antennas. WiMi [19] and LiqRay [61] can identify liquid type
and concentration using Wi-Fi signals, respectively. How-
ever, these systems are impractical for glucose monitoring
because of their specific requirements related to container size
or liquid thickness. Unsoo et al. propose RF-EATS [27, 28],
a method that involves placing RFID tags on the surface of
liquid containers and analyzing the spectral features of the
reflected signals. Binbin et al. develop a liquid classification
system using RFID [70]. However, these methods cannot
differentiate liquid concentrations with the fine granularity
required for glucose monitoring, nor have they verified feasi-
bility in human experiments. Also as shown in Figure 14, our
preliminary analysis demonstrates that antennas alone are not
sufficiently sensitive for glucose sensing. This is because an-
tennas on existing commercial devices are usually optimized
for wireless communication and radar applications, lacking
the impedance matching and fine-grained glucose sensing
capabilities.

3 PRELIMINARY ANALYSIS
Our goal is to develop a non-invasive CGM system. As shown
in Figure 2(b), we aim to use antennas in wearable devices
to detect the subtle changes of glucose concentration, thus
replacing traditional invasive CGM sensors. In this section,
we explore the impact of glucose concentration changes on
the permittivity values of human tissue fluid. We then discuss
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(a) Fat tissue fluid at different glucose levels
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(b) Muscle tissue fluid at different glucose levels

Figure 4: Examples of permittivity values of fat and mus-
cle tissue fluid, with varying glucose concentrations. These
data are fitted using the Cole-Cole model

the challenges of directly measuring glucose concentration
changes in tissue fluid with Wi-Fi antennas.

3.1 Permittivity of Human Tissues versus
Glucose Concentration

Characterization of the permittivity of human tissue fluid at
different glucose levels is the theoretical core of glucose sens-
ing based on radio frequency signals. Permittivity, often rep-
resented by the relative permittivity 𝜖𝑟 , is the ratio of absolute
permittivity 𝜖 to vacuum permittivity 𝜖0 and can be expressed
as a complex function: 𝜖𝑟 (𝜔) = 𝜖′𝑟 (𝜔) − 𝑗𝜖′′𝑟 (𝜔), where 𝜔
is the angular frequency, and 𝜖′𝑟 and 𝜖′′𝑟 are the real part and
the imaginary part, respectively. The Cole-Cole model effec-
tively captures frequency-dependent permittivity behavior,
which allows us to fit relative permittivity properties using
finite measured values at a few frequencies. The model [36]
captures complex permittivity as follows:

𝜖𝑟 = 𝜖∞ +
𝑛∑︁
𝑖=1

𝜖𝑠 − 𝜖∞
1 + ( 𝑗𝜔𝜏𝑛)1−𝛼𝑛

+ 𝜎𝑖

𝑗𝜔𝜖′0
(1)

where 𝜖𝑠 and 𝜖∞ represent the limits of permittivity at low
and high frequencies, 𝜖0 is the free space permittivity, 𝜏 de-
notes relaxation time, 𝛼 describes relaxation loss peak broad-
ening, and 𝜎𝑖 is ionic conductivity [25]. Here, we set n=1
and 𝛼=0 (i.e., the single pole Cole-Cole model) and fit the
model parameters of the glucose solutions (with pure water
as the background), as shown in Table 1 in the appendix. The
frequency-dependent complex permittivity curves for various
glucose concentrations is depicted in Figure 3.

The intercellular spaces in these tissues are filled with inter-
stitial fluid. When blood glucose concentration changes, due
to osmotic pressure, glucose molecules permeate from the
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blood vessels into the interstitial fluid, causing correspond-
ing changes in the glucose concentration of the interstitial
fluid. However, the glucose-dependent permittivity changes
of human tissue fluid at different glucose levels have not
been thoroughly investigated. To address this, we model the
tissue fluid as a mixture of tissue and glucose liquid. Us-
ing the Maxwell Garnett formula [69], we assume that the
tissue fluid within various biological tissues serves as the
background medium and glucose acts as the dispersed phase,
the mixture’s permittivity can be characterized as a two-phase
composite system:

𝜖𝑒 𝑓 𝑓 = 𝜖𝑡𝑠 + 3𝑐𝑔𝑙𝑢𝜖𝑡𝑠
𝜖𝑔𝑙𝑢 − 𝜖𝑡𝑠

𝜖𝑔𝑙𝑢 + 2𝜖𝑡𝑠 − 𝑐𝑔𝑙𝑢 (𝜖𝑔𝑙𝑢 − 𝜖𝑡𝑠 )
(2)

where 𝜖𝑒 𝑓 𝑓 represents the effective permittivity of the mixture,
𝜖𝑡𝑠 is the complex permittivity of the biological tissue, and
𝜖𝑔𝑙𝑢 is the permittivity of the glucose solution with a volume
fraction 𝑐𝑔𝑙𝑢 . Since glucose concentration is low (𝑐𝑔𝑙𝑢 ≪ 1),
Eq. 2 can be simplified as [26]:

𝜖𝑒 𝑓 𝑓 = 𝜖𝑡𝑠 + 3𝑐𝑔𝑙𝑢𝜖𝑡𝑠
𝜖𝑔𝑙𝑢 − 𝜖𝑡𝑠
𝜖𝑔𝑙𝑢 + 2𝜖𝑡𝑠

(3)

We consider the mainly two types of biological tissues, fat
and muscle, whose complex permittivity values are obtained
from [23, 57]. Here, we simplify the model by using the
permittivity of tissue fluid in place of that of biological tissue.

To determine the effective permittivity of fat and muscle
tissues mixed with glucose, we first need to know the permit-
tivity of pure glucose. The permittivity of pure glucose can
be approximated by applying the Maxwell Garnett model to
glucose-water mixtures. The effective permittivity of glucose-
water solutions 𝜖𝑒 𝑓 𝑓 −𝑔𝑙𝑢𝑤𝑎𝑡𝑒𝑟 at known concentrations can be
modeled by the single pole Cole-Cole model with parameters
listed in Table 1. Therefore, the permittivity of pure glucose
can then be expressed as:

𝜖𝑔𝑙𝑢 = −
2(𝜖𝑒 𝑓 𝑓 −𝑔𝑙𝑢𝑤𝑎𝑡𝑒𝑟 − 𝜖𝑤𝑎𝑡 ) + 3𝑐𝑔𝑙𝑢𝜖𝑤𝑎𝑡
𝜖𝑒 𝑓 𝑓 −𝑔𝑙𝑢𝑤𝑎𝑡𝑒𝑟 − 𝜖𝑤𝑎𝑡 − 3𝑐𝑔𝑙𝑢𝜖𝑤𝑎𝑡

𝜖𝑤𝑎𝑡 (4)

Once the complex permittivity of pure glucose 𝜖𝑔𝑙𝑢 is es-
tablished, it can be used in conjunction with the Eq. 3 to
calculate the glucose-dependent permittivity of fat and mus-
cle tissues. These properties are then fitted using a double
Cole-Cole model (𝑛 = 2), with the resulting parameters listed
in Table 2 and 3, respectively. The fitted frequency-dependent
permittivity curves of the ISF, i.e., fat and muscle, are shown
in Figure 4(a) and (b), respectively. From the simulated re-
sults, varying glucose concentrations have a minimal impact
on the permittivity of the tissues. When the glucose concentra-
tion changes from 0 to 500 mg/dL, the real part of the relative
permittivity decreases by less than 0.3 for fat and less than
0.5 for muscle. Concurrently, the imaginary part increases by
less than 0.05 for both fat and muscle.

Figure 5: Equivalent circuit model of using antenna to
sense concentration level in tissue fluid

3.2 Impact of Glucose Concentration Changes
on Wireless Signals

We next theoretically analyze the impact of varying glucose
concentrations on the permittivity of human tissues and its
effects on propagation of EM waves. To this end, we utilize
equivalent circuit theory to model the setup depicted in Fig-
ure 2(b), and the circuit model is shown in Figure 5. We can
derive the reflection ratio from the equivalent circuit by cal-
culating the ABCD matrix [54]. The ABCD matrix is a 2×2
matrix used to characterize the properties of linear two-port
networks in electrical circuits. The elements A, B, C, and D
can be calculated to describe the transmission characteristics.

We model the antenna as a parallel impedance, denoted as
𝑍𝑎𝑛𝑡𝑒𝑛𝑛𝑎 . And the ABCD matrix of the antenna is:𝑀𝑎𝑛𝑡𝑒𝑛𝑛𝑎 =[

1 0
1

𝑍𝑎𝑛𝑡𝑒𝑛𝑛𝑎
1

]
. When EM waves are radiated from the an-

tenna, they undergo reflection, transmission, and absorption
through the skin, fat, and muscle tissues. We model the tissue
layers as transmission lines [54], which involve parameters
𝑙 for thickness, 𝑍 for complex characteristic impedance, and
𝛾 for propagation constant. Both 𝑍 and 𝛾 are derived from
relative permittivity 𝜖𝑟 and relative permeability 𝜇𝑟 as fol-

lows: 𝑍 =

√︃
𝜇0𝜇𝑟
𝜖0𝜖𝑟

= 𝑍0

√︃
𝜇𝑟
𝜖𝑟

and 𝛾 =
𝑗𝜔𝜇0

√
𝜇𝑟𝜖𝑟

𝑍0
= 𝛾0

√
𝜇𝑟𝜖𝑟 ,

where 𝑍0 is free space’s characteristic impedance (377 Ω), 𝛾0
is free space’s propagation constant (i.e., 𝑗𝜔

𝑐
), and 𝑐 is the

speed of light. Since human tissues are not magnetic mate-
rials, we set the relative permeability 𝜇𝑟 of each tissue to 1.
The corresponding ABCD matrix of the transmission line is
as follows:

𝑀𝑡𝑙 =

[
𝑐𝑜𝑠ℎ(𝛾𝑙) 𝑍𝑠𝑖𝑛ℎ(𝛾𝑙)
𝑠𝑖𝑛ℎ (𝛾𝑙 )

𝑍
𝑐𝑜𝑠ℎ(𝛾𝑙)

]
(5)

Thus, based on the equivalent circuit of Figure 5, we can
create an overall ABCD matrix to characterize this circuit:

𝑀𝑡𝑜𝑡𝑎𝑙 = 𝑀𝑎𝑛𝑡𝑒𝑛𝑛𝑎𝑀𝑡𝑙−𝑠𝑘𝑖𝑛𝑀𝑡𝑙−𝑓 𝑎𝑡𝑀𝑡𝑙−𝑚𝑢𝑠𝑐𝑙𝑒 =

[
𝐴 𝐵

𝐶 𝐷

]
(6)

We can then convert the ABCD matrix to S-parameters to
derive the 𝑆11 (i.e., reflection ratio) of this circuit:

𝑆11 =
𝐴 + 𝐵/𝑍𝑙𝑜𝑎𝑑 −𝐶𝑍𝑠𝑜𝑢𝑟𝑐𝑒 − 𝐷
𝐴 + 𝐵/𝑍𝑙𝑜𝑎𝑑 +𝐶𝑍𝑠𝑜𝑢𝑟𝑐𝑒 + 𝐷

(7)
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(b) Antenna attached to the human tissues

Figure 6: Effect of glucose concentration changes in the
human tissues on the antenna’s 𝑆11 parameters

where 𝑍𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑍𝑙𝑜𝑎𝑑 are the characteristic impedance of
the excitation source and the load, respectively. Here, we set
𝑍𝑠𝑜𝑢𝑟𝑐𝑒 to 50 Ω, and use the bone as the load of this circuit.
𝑍𝑙𝑜𝑎𝑑 = 𝑍𝑏𝑜𝑛𝑒 =

𝑍0
𝜖𝑟−𝑏𝑜𝑛𝑒

[21].
Assume a scenario where a Wi-Fi antenna is used to sense

glucose changes in tissue fluid. For an antenna operating at
5 GHz, modeled as a parallel LC circuit with inductance L
= 1 nH and capacitance C = 0.1 pF, the impedance can be
expressed as: 𝑍𝑎𝑛𝑡𝑒𝑛𝑛𝑎 = 𝜔𝐿

(𝜔2𝐿𝐶−1) 𝑗 . Figure 6(a) show the
resonance of this antenna in the air, represented by the 𝑆11
parameters. We set the thicknesses of the skin, fat, and muscle
layers to 1 mm, 10 mm, and 30 mm, respectively. The per-
mittivity values of the skin and bone are defined as specified
in [21]. The permittivity parameters of fat and muscle across
varying glucose levels are set as shown in Figure 4(a) and (b).
After placing the antenna on the user’s tissue, the 𝑆11 parame-
ters across different glucose concentrations are illustrated in
Figure 6(b). We observe the following: (1) The antenna’s reso-
nance is significantly attenuated due to impedance mismatch,
resulting in most EM waves not effectively propagating to
human tissue; (2) Although glucose concentration changes
alter the permittivity of human tissues, this change is hardly
reflected in the antenna’s 𝑆11. Here, we use a Wi-Fi antenna as
an example. However, antennas operating at other frequency
bands like UWB and millimeter waves face similar challenges.
This is due to similar principles of the antenna design and
minimal changes in glucose permittivity across frequencies.

4 CGMM SYSTEM DESIGN
4.1 Overview of CGMM
In this paper, we propose the CGMM system, which intro-
duces an optimized metasurface between the antenna and the
user’s tissue to amplify the changes in the antenna’s reflection
frequency response caused by variations in glucose concen-
tration. Figure 7 provides an overview of CGMM. Initially,

we establish an equivalent circuit model (see Figure 7(a)) to
describe the frequency response of the antenna to the glucose
concentration changes in the tissue fluid after incorporating
the metasurface. Considering the variability of parameters
in human tissues, such as the thickness and permittivity of
skin, fat, and muscle, we introduce a novel calibration step
by designing a tunable active metasurface, as depicted on
the left side of Figure 7(b). We define the parameter space
range related to human tissue characteristics and determine
the tunable impedance range for calibration. The right of Fig-
ure 7(b) shows the calibration step, where we identify the
optimal impedance of the tunable metasurface for a target
user to achieve the best coupling resonance. Finally, as shown
in Figure 7(c) and (d), we facilitate the design of the final
passive metasurface through the calibrated impedance and the
equivalent ABCD matrix. The optimized passive metasurface
will work in conjunction with the specified antenna to achieve
high-quality resonance with the tissues of the user’s arm.

4.2 Modeling Metasurface-aided Glucose
Concentration Sensing

4.2.1 Metasurface Modeling. A metasurface is a 2D ma-
terial with negligible thickness, typically composed of a metal
layer and a substrate layer. The metal layer plays a crucial
role by generating surface currents and magnetic currents
when excited by incident EM waves, thereby enabling the
control of the propagation of incident EM waves by pro-
ducing new EM waves. The substrate primarily serves to
support the metal layer. In the equivalent circuit theory, mod-
eling the metasurface is depicted in Figure 7(a). The metal
layer is modeled as a parallel component, and its equivalent
impedance is denoted as 𝑍𝑚𝑒𝑡𝑎𝑙 , the corresponding ABCD

matrix is expressed as 𝑀𝑚𝑒𝑡𝑎𝑙 =
[

1 0
1

𝑍𝑚𝑒𝑡𝑎𝑙
1

]
. Here, we ne-

glect the resistance of the metal layer, so its impedance is
purely imaginary, such as 𝑗𝑋 . The substrate layer is modeled
as a transmission line. Assuming the propagation constant
and characteristic impedance of the substrate material are 𝛾𝑑
and 𝑍𝑑 , thickness of it is 𝑙 , its ABCD matrix is represented

as𝑀𝑡𝑙−𝑚𝑡𝑠 =

[
𝑐𝑜𝑠ℎ(𝛾𝑑𝑙𝑑 ) 𝑍𝑑𝑠𝑖𝑛ℎ(𝛾𝑑𝑙𝑑 )
𝑠𝑖𝑛ℎ (𝛾𝑑 𝑙𝑑 )

𝑍𝑑
𝑐𝑜𝑠ℎ(𝛾𝑑𝑙𝑑 )

]
. Consequently, the

overall ABCD matrix of the metasurface can be formulated
as 𝑀𝑚𝑡𝑠 = 𝑀𝑚𝑒𝑡𝑎𝑙𝑀𝑡𝑙−𝑚𝑡𝑠 .

4.2.2 Optimization Objective. Our optimization objec-
tive is to seek the optimal metasurface design such that the
antenna’s reflection coefficient 𝑆11 exhibits the maximum
change when there is a variation in the glucose levels in the
tissue fluid. To achieve this, we first establish a comprehensive
circuit model based on the metasurface for sensing glucose
variations in the tissue fluid, also as shown in Figure 7(a), and
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Figure 7: Pipeline for optimizing the glucose-sensitive passive metasurface: (a) We introduce a metasurface and establish
an equivalent circuit model to describe the antenna’s frequency response. (b) To address unknown human tissue
parameters, we design a tunable metasurface for calibration. (c) The equivalent impedance from the calibrated tunable
metasurface is used to optimize passive metasurface design. (d) We pre-design two template-based passive metasurfaces
and use equivalent impedance to inversely solve the geometric parameters. Note that the curves in (c) show impedance
values for different geometric parameters, with red curves for Template 1 and blue for Template 2

construct the ABCD matrix for the entire system as follows:

𝑀𝑡𝑜𝑡𝑎𝑙 = 𝑀𝑎𝑛𝑡𝑒𝑛𝑛𝑎𝑀𝑚𝑒𝑡𝑎𝑙𝑀𝑡𝑙−𝑚𝑡𝑠𝑀𝑡𝑙−𝑠𝑘𝑖𝑛𝑀𝑡𝑙−𝑓 𝑎𝑡𝑀𝑡𝑙−𝑚𝑢𝑠𝑐𝑙𝑒
(8)

According to Eq. 7, we can obtain the 𝑆11 parameters. Consid-
ering that the substrate material does not exhibit capacitive or
inductive characteristics, generally, when designing a meta-
surface, the primary optimization focuses on the pattern of the
metal layer to achieve the desired impedance characteristics.

During the optimization process, we first select the sub-
strate material type and its thickness. We also define the opera-
tional frequency band in advance, such as Wi-Fi (5-6 GHz) or
UWB (7-10 GHz). This allows us to optimize the metasurface
to function effectively within the wireless frequency bands
supported by wearable devices. Therefore, the definition of
our optimization objective is as follows:

max
𝑍𝑚𝑒𝑡𝑎𝑙

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1, 𝑗≠𝑖

| |𝑆11 (𝑐𝑖 ) − 𝑆11 (𝑐 𝑗 ) | |2 (9)

where𝑚 denotes the glucose level number, and 𝑐𝑖 is the 𝑖 − 𝑡ℎ
glucose concentration value. For example, [𝑐0, 𝑐1, 𝑐2, . . . , 𝑐5] =
[0, 100, 200, . . . , 500] mg/dL. 𝑆11 (𝑐𝑖 ) means the 𝑆11 parameters
of the glucose solution with concentration 𝑐𝑖 . The optimiza-
tion goal is to maximize the Euclidean distances of the 𝑆11
parameters across different glucose concentrations. We use
this metric for two reasons: (1) Maximizing the distances in
the frequency response increases the differences to make sub-
sequent glucose level identification easier, (2) Compared to
𝑚𝑖𝑛(·) and 𝑎𝑟𝑔𝑚𝑖𝑛(·) functions, the distance-based loss func-
tion has a gradient during backpropagation, which supports
gradient descent optimizer.

4.2.3 Validation of Optimization Results. To validate our
concept of designing the metasurface to reflect subtle changes
in glucose concentration in tissue fluid through detectable

antenna’s 𝑆11 variations, we assume specific scenarios and
assess the feasibility of the proposed optimization model. In
details, we assume that the permittivity values of the user’s
various tissues is known and consistent with the parameters
outlined in Sec. 3.2. We set the substrate material of the
metasurface to FR4 with a thickness of 1.2 mm.

We design antennas and metasurfaces to operate effectively
in two target frequency bands: 5-6 GHz and 7-8 GHz. We use
equivalent parallel LC circuits to model. The parameters for
the antenna at 5.5 GHz are: 𝐿 = 1.45 𝑛𝐻 and𝐶 = 0.53 𝑝𝐹 , and
the parameters for 7.5 GHz are: 𝐿 = 1.06 𝑛𝐻 and𝐶 = 0.27 𝑝𝐹 .
We optimize the equivalent impedance, i.e., 𝑗𝑋 , of the meta-
surface’s metal layer to ensure compatibility with each an-
tenna’s operational frequency. The optimization results are
presented in Figure 8.

Our findings show that the optimized metasurface effec-
tively reflects tissue fluid glucose changes through 𝑆11 param-
eters and operates well within specified frequency bands. Sim-
ulations indicate that glucose variations cause resonance point
frequency shifts, with about ∼40 MHz per 100 mg/dL change.
While amplitude and phase at the resonance point are affected,
the link between glucose concentration and frequency shift is
more consistent. Additionally, measuring power is easier than
phase for RF devices. Thus, we use resonance point shifts to
detect glucose concentration changes.

4.3 Calibration with a Tunable Metasurface
A major challenge in practical use arises from the issue of
the unknown parameters of a user’s tissues. To address this
issue, we propose an innovative one-shot calibration. This
method utilizes a tunable metasurface with variable capaci-
tors to achieve optimal impedance resonance with the target
user’s tissues. After obtaining the optimal resonance, we use
HFSS to determine the equivalent impedance curve of the
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(a) Optimal metasurface operating at around 5-6𝐺𝐻𝑧

(b) Optimal metasurface operating at around 7-8𝐺𝐻𝑧

Figure 8: Reflected frequency responses of two different
antennas on the glucose concentrations based on the opti-
mized metasurface designs

tunable metasurface within the specific frequency band (i.e.,
𝑍𝑎−𝑚𝑡𝑠 (𝜔)). Then we derive a passive metasurface with the
equivalent ABCD matrix.

Note that we only need to handle unknown parameters
of the user’s tissues because the antenna parameters can be
obtained, e.g., by measuring the operational frequency bands
and equivalent impedance of it using a VNA or through finite
element simulation like HFSS [3].

4.3.1 Tunable Metasurface Design. The tunable metasur-
face is a crucial component of the calibration process and must
be carefully designed for effective resonance coupling with
the tissue layers on most users’ arms by adjusting the vari-
able capacitors. Figure 7(b) illustrates a tunable metasurface
unit design, featuring two varactor diodes as programmable
capacitors and a metallic patch acting as a mini antenna. It
is essential to determine the specific geometric parameters
of the tunable metasurface unit, as well as the tuning range
of the adjustable capacitors. To achieve this, we define pa-
rameter ranges for each tissue layer. The thickness ranges are
as follows: skin (0.5-2 mm), fat (1-10 mm), and muscle (10-
30 mm). We utilize published permittivity data [21] and our
fitted Cole-Cole model parameters (see Sec. 3.1) for glucose
concentration changes in fat and muscle tissues.

We adopt the same optimization model as in Sec. 4.2 to
solve for the design parameters of the tunable metasurface.
First, we specify that the substrate material of the tunable
metasurface is FPC with a thickness of 0.05 mm. Subse-
quently, we iterate over all possible tissue parameters. For
each set of parameters, we optimize the impedance to achieve
the best detectable differences in the 𝑆11 parameters, corre-
sponding to changes in glucose concentration in the tissue
fluid. Ultimately, we obtain a series of equivalent impedance
parameters for the metal layer. We use the built-in optimizer
of HFSS software to optimize the pattern set parameters and
the impedance range of the varactor diode that satisfy the

(a) Low Q factor (b) High Q factor

Figure 9: Enhancing resonant Q factor can amplify 𝑆11
variation in response to glucose concentration changes
aforementioned optimized impedance range, facilitating the
selection of the varactor diode.

4.3.2 Calibration Process. For a measurement target with
specified parameters, our calibration process is described be-
low. We place the tunable metasurface between the antenna
and the target environment (e.g., skin on the arm). We then
systematically vary the capacitance of the varactor diodes
from a minimal to a maximal value. By observing the 𝑆11
parameter of the antenna, we identify the capacitance value
that yields optimal resonance and the best Q factor under the
current environmental setup. Once the optimal capacitance
for resonance coupling is determined, we use HFSS simula-
tion to derive the corresponding equivalent impedance. This
information enables the optimization of a passive metasurface
that matches the ABCD matrix of the tunable metasurface,
ultimately facilitating a glucose-sensitive passive metasurface
for unknown environmental conditions.

Note that we only need to tune the varactor diode once for
the current glucose level to obtain the calibrated impedance.
This is based on our empirical observation for passive meta-
surface design optimization results: an optimal resonance
quality at one concentration suffices to optimize our objective
in Eq. 9. 𝜕 |𝑆11 |

𝜕𝑓
|𝑓0 is the derivative at the resonant frequency

(𝑓0), reflecting the steepness of the resonance peak. We use
the resonant Q factor, to capture the quality of a resonant
system. 𝑄 =

𝑓𝑟
Δ𝑓 , where 𝑓𝑟 is the resonance frequency and Δ𝑓

is the bandwidth, typically defined as the frequency range
between the points on the response curve that are at the -3 dB
level. A larger Q indicates a better resonant quality. As the Q
factor increases, the absolute value of the derivative 𝜕 |𝑆11 |

𝜕𝑓
|𝑓0

also increases, because the resonance peak becomes sharper.
Consequently, for a given perturbation in capacitance (Δ𝐶,
e.g., 0.01 pF), the change in (Δ|𝑆11 |) will be more significant.
Therefore, for an LC resonant circuit with a high Q factor,
a small change in capacitance (e.g., changes in glucose con-
centration) will induce a more pronounced change in (𝑆11) at
the resonant frequency compared to a circuit with a lower Q
factor. Figure 9 presents two cases wherein different meta-
surfaces are optimized for coupling with blood. It is evident
that a higher resonant Q-factor results in a larger variation of
the 𝑆11 parameter caused by changes in blood glucose con-
centration. This observation justifies our calibration process.
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(a) Passive metasurface (b) Tunable metasurface

Figure 10: Examples of the fabricated metasurfaces, both
the metasurface unit with 5 mm×5 mm

Under any glucose concentrations, calibration is achieved by
simply identifying the parameters of the tunable metasurface
that result in an optimal resonant coupling.

4.4 Inverse Design of Passive Metasurfaces
with Calibrated Impedance

During the calibration process, we obtain the equivalent impedance
value of the metal layer in the tunable metasurface, and
the overall ABCD matrix is: 𝑀𝑡−𝑚𝑡𝑠 = 𝑀𝑚𝑒𝑡𝑎𝑙−𝑡𝑀𝑡𝑙−𝑡 . To
make the passive metasurface realize the same functionality
as the calibrated active metasurface, we need to make their
overall ABCD matrices the same in the operating frequency
bands. We set the ABCD matrix of passive metasurface as
𝑀𝑝−𝑚𝑡𝑠 = 𝑀𝑚𝑒𝑡𝑎𝑙−𝑝𝑀𝑡𝑙−𝑝 . By establishing an impedance
function related to the geometric parameters of the metal
layer, we can obtain the 𝑍𝑚𝑒𝑡𝑎𝑙−𝑝 = 𝑗𝐹𝑡𝑝𝑙 (𝐿, 𝑎, 𝑏, 𝑐, 𝑁 ), tpl
is the template id (i.e., 1 or 2), and the detailed curves of
the impedance is shown in Figure 7(c). Consequently, it is
essential to obtain the metal pattern’s impedance function
for various geometric parameters and establish a relation-
ship between these parameters and the impedance function
coefficients. The curves can be approximated by an n-order
polynomial function, i.e., χ(𝑓 ) = χ1 𝑓

𝑛+χ2 𝑓 𝑛−1+...+χ𝑛+1. For
each χ𝑖 coefficient, an equation incorporating geometric pa-
rameters is fitted, i.e., χ𝑡𝑝𝑙 = 𝐹𝑡𝑝𝑙 (𝐿, 𝑎, 𝑏, 𝑐, 𝑁 ). Along with the
thickness 𝑙𝑑 of the substrate FR4 layer, we can obtain the total
ABCD matrix of the passive metasurface. Our objective is to
match the equivalent impedance of the passive metasurface
with that of the calibrated one so that their ABCD matrices
are equal. Hence we formulate the target loss function as:

min
𝑡𝑝𝑙,𝑳,𝒂,𝒃,𝒄,𝑵 }

| |𝑀𝑝−𝑚𝑡𝑠 −𝑀𝑡−𝑚𝑡𝑠 | |2 (10)

We also utilize the Adam gradient descent optimizer to solve
the optimization problem. The loss function converged to a
value below 0.8, corresponding to a match error of 0.27%.

5 EVALUATION
5.1 Prototype Implementation
5.1.1 Metasurface fabrication. Our tunable metasurface
prototype is fabricated using PCB techniques with FPC [22]
material as the substrate. The SMV1408 [62] variable capac-
itor is chosen, capable of tuning capacitance from 4.08 pF

Figure 11: Experimental setup for prototype 1: (a) meta-
surface affixed to external antennas, (b) selection of varied
pork samples for diversity, and (c) pork immersed in glu-
cose solutions to alter tissue fluid glucose levels, with a
CGM sensor providing ground truth and VNA/SDR mea-
suring antenna 𝑆11 parameters

to 0.95 pF across a 0 to 30V range, suitable for calibration
steps. The unit parameters of the tunable metasurface are as:
𝑔 = 0.7 mm, 𝑤1 = 𝑤2 = 0.2 mm, 𝑃 = 4 mm, 𝐻 = 2 mm. Our
optimized passive metasurface is fabricated using copper-clad
laminate (with FR4 substrate) and etching techniques. The
fabricated tunable metasurface and an example of a passive
metasurface are shown in Figure 10. The material cost of
passive metasurfaces is only around 1 cent, and the active
metasurface costs $11.7.

5.1.2 Antenna 𝑆11 measurement. Portable radio de-
vices and external antenna. We select two mainstream portable
radio devices to measure the 𝑆11 parameters of the antenna.
One is LibreVNA [74], which is an open source portable VNA
and user-friendly. The other is the traditional USRP SDR de-
vice, i.e., B210 [56]. When used with a circulator [16], it
can also measure the antenna’s 𝑆11 parameters [33]. Specif-
ically, we use the USRP to generate continuous waves at
each individual frequency point in the Wi-Fi band and record
the corresponding 𝑆11 parameters. We then performed a fre-
quency sweep to obtain the 𝑆11 curve across the entire band.
This selection allows us to compare the impact of different
measurement devices on the glucose sensing accuracy. We
use a patch antenna to sense glucose, which can work in the
Wi-Fi band. We affix the fabricated passive metasurface onto
the antenna, as illustrated in Figure 11(a). The measurement
setups of B210 and LibreVNA are shown in Figure 11(c).

Commercial UWB radar module. We use a commercial
UWB radar module, the SLMX4 [58], to verify that our pro-
posed metasurface can be easily integrated into existing com-
mercial devices. The SLMX4 supports two UWB bands, 6.0-
8.5 GHz and 7.25-10.2 GHz. To obtain the UWB antenna’s
frequency response shifts to the glucose changes, we initially
record the received pulse signals and perform FFT to analyze
the frequency response of the TX-RX channel using a perfect
corner reflector. Next, we optimize the metasurface for the
UWB frequency range, affixed it to the RX antenna, and at-
tach the entire antenna assembly to the test subject, as shown



ACM MobiCom ’25, November 3–7, 2025, Hong Kong, Hong Kong Hao Pan, Yezhou Wang, et al.

Figure 12: Experimental setup for prototype 2: metasur-
face affixed to the UWB radar device’s RX antenna

(a) Prototype 1: Antenna+VNA (b) Prototype 2: UWB Radar

Figure 13: Setup for human subject experiments
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(a) The antenna is directly attached to the pork skin, the pork is immersed in a high-concentration glucose solution for two hours
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(b) Metasurface affixed to the antenna, which are then attached to the pork skin. The pork is immersed in pure water for two hours
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(c) Metasurface affixed to the antenna, which are then attached to the pork skin. The pork is immersed in high-concentration glucose solutions for two hours

Figure 14: Validation of the metasurface’s amplification on antenna 𝑆11 parameter to tissue fluid glucose concentration
changes with prototype 1. The first column shows the CGM data. The second column plots the 𝑆11 parameters, with
different colors representing data collected at various time points with an update rate of 1min/sample. The third to fifth
columns display the resonance frequency offset, magnitude, and phase variation curves of the 𝑆11 parameters over time

in Figure 12. Finally, we recalculate the FFT results of the
received signals. By comparing these FFT results, we obtain
the frequency response of the RX antenna.

5.2 Experiment Setup
5.2.1 Simulation of tissue fluid changes using pork in
glucose solutions. For measurements of glucose concentra-
tions in the non-healthy range (200-500 mg/dL), we utilize
pork as the experimental subject. Pork is immersed in high-
concentration glucose solutions, allowing glucose molecules
to diffuse into the tissue fluid over time, thereby increasing
the glucose concentration within the pork. A Libre Freestyle
CGM sensor [41] is insetherted into the pork to obtain ground
truth measurements. Subsequently, two types of prototype
CGMM sensors are affixed to the surface of the pork skin to
measure the 𝑆11 parameters of the antenna. Additionally, we
employ a tunable metasurface for calibration across differ-
ent pork samples, taking into account the varying parameters

of skin, fat, and muscle. The specific setups are illustrated
in Figure 11 and Figure 12.

5.2.2 Human subject experiment. To evaluate the effec-
tiveness of our CGMM sensor in measuring human glucose
levels, we utilize 3D printing technology to create a mounting
bracket for the metasurface and antenna. The bracket can be
integrated into the wrist band, enhancing wearability and en-
suring secure contact between the metasurface and the human
skin. During the test, volunteers are required to drink high-
glucose beverages to induce glucose fluctuations. We also let
volunteers wear a Libre Freestyle CGM sensor to record the
ground truth. The specific setup is illustrated in Figure 13.

5.3 Performance in Pork-based Experiments
5.3.1 Effectiveness of the optimized metasurface. We
conduct three experiments with CGMM prototype 1 (with Li-
breVNA) to validate the effectiveness of the designed metasur-
face, with results shown in Figure 14. Each pork experiment
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Figure 15: Results of prototype 2 in pork experiments
confirm that the metasurface amplifies the UWB radar’s
frequency response to glucose concentration changes

lasts only 2 hours at a constant room temperature of 26◦C
to ensure the pork remained fresh. We find the following:
(a) With only the antenna, glucose changes have negligible
effect on the 𝑆11 parameters. (b) With the metasurface, the
𝑆11 parameter exhibits strong resonance. At constant glucose
levels, there is minimal resonance frequency shift but some
variation in resonance amplitude and phase. (c) As glucose
concentration increases, the 𝑆11 parameter frequency shifts
closely track the glucose changes, while amplitude and phase
changes are less consistent. We also conduct one experiments
with CGMM prototype 2 (with 6-8.5 GHz band), with re-
sults shown in Figure 15. We observe that FFT analysis of
the received signals from UWB RX antenna shows effec-
tive resonance with the added metasurface. The resonance
frequency shifts right consistently as glucose concentration
increases, confirming the metasurface’s effectiveness in the
UWB frequency band.

The resonance frequency shifts from the measurements
linearly correlate with glucose concentration changes, allow-
ing direct conversion between the two. For example, in Fig-
ure 14(c), given the 𝑆11 parameter at time point index i with
a resonance frequency 𝑓𝑖 (i.e., 𝑎𝑟𝑔𝑚𝑖𝑛( |𝑆11 |)), the glucose
concentration can be calculated as: 𝑓𝑖−𝑓1

𝐾
, where 𝑓1 is the

resonance frequency from the first measurement and 𝐾 is a
conversion constant. In this case, we set it to 0.23 𝑀𝐻𝑧

𝑚𝑔/𝑑𝐿 .

5.3.2 Performance analysis of prototype 1. We conduct
five experiments, each using a new piece of pork immersed
in glucose solutions. In each experiment, we use the tunable
metasurface for calibration and obtain a practically optimized
passive metasurface for the target pork. The testing setups
are shown in Figure 11, and the recorded 𝑆11 parameters
are smoothed for the post-processing and visualization. We
convert the resonance frequency shift into the relative changes
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Figure 16: Clarke error analysis for prototype 1&2 in
pork experiments. (a) Region A-E probabilities: 100%, 0,
0, 0, 0. (b) Region A-E: 95.8%, 4.2%, 0, 0, 0. (c) Region A-
E: 66.7%, 26.7%, 4.2%, 2.5%, 0. (d) Region A-E: 70.6%,
22.5%, 0.8%, 6.1%, 01

in glucose concentration. For absolute glucose concentration
error analysis, we use the CGM data from the first time point
as a reference and add it to the CGMM measurements.

We use Clark error analysis1 to evaluate the measurement
error between our CGMM system and the CGM sensor. The
results, shown in Figure 16(a) and (b), indicate a high similar-
ity between the CGMM system and CGM measurements un-
der pork experiments. The performance of the B210 is slightly
inferior to the LibreVNA, likely due to the circulator’s less
effective signal isolation. High-quality signal-isolating circu-
lators are expensive and would significantly increase the cost
of a CGMM prototype. To address this, we propose replac-
ing single-antenna 𝑆11 measurements with two antennas to
measure the channel parameters between them. Fundamen-
tally, both methods reflect the same principle: the channel
characteristics induced by electromagnetic waves as they pass
through the metasurface, skin, fat, muscle, and other tissues.
This design eliminates the need for costly circulators, making

1The Clark grid [10] divides the scatterplot of the reference and evaluation
glucose meters into five regions: Region A includes values within 20% of
the reference. Region B contains points outside of this range that would not
lead to inappropriate treatment. Region C includes points that could lead
to unnecessary treatment. Region D contains points indicating a potentially
dangerous failure to detect hypo- or hyperglycemia. Region E consists of
points that could confuse the treatment of hypo- and hyperglycemia.
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(b) Resonance Freq. vs. CGM results

Figure 17: Exemplar results of prototype 1 (with Li-
breVNA) in human subject experiments
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Figure 18: Exemplar results of prototype 2 (UWB band:
6-8.5 GHz) in human subject experiments

the system more practical and cost-effective. In the prototype
based on commercial UWB radar, we validate the feasibility
of using two antennas to measure equivalent 𝑆11 parameters.

5.3.3 Performance analysis of prototype 2. We config-
ure the UWB radar to operate in two frequency bands and
optimize the passive metasurface for different pork samples,
repeating each experiment five times. The SLMX4 board’s
frequency domain resolution is 388.8 MHz. To improve the
identification of peak positions, we zero-pad the original sam-
pling data to 32,768 points for FFT analysis, which enhances
computational resolution and yields smoother signals without
increasing physical resolution. Clarke error analysis is em-
ployed to evaluate the performance of Prototype 2, as shown
in Figure 16 (c) and (d). Compared to Prototype 1, Prototype
2 demonstrate lower measurement accuracy, primarily due
to its limited frequency resolution. However, the resonance
points from the frequency response curve remains strongly
correlated with glucose changes.

5.4 Performance in Human Experiments
We recruit ten volunteers to test the performance of our sys-
tem, including 8 males and 2 females, aged 22 to 48; these
volunteers are healthy and do not have diabetes2. During the
test, we ask the volunteers to drink two cups of high-sugar
beverages (a total of around 800 mL) and conduct measure-
ments over a 3-hour period. We install two CGMM proto-
types on each of the volunteers’ arms, as shown in Figure 13.
Throughout the test, the volunteers are seated and only slight
arm movements are allowed. For each volunteer, we need
a calibration for obtaining the value of K. We measure an

2Our human subject experiments have received IRB approval from the De-
partment of Computer Science and Technology at Tsinghua University.
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Figure 19: Clarke error analysis for in human subject
experiments. (a) Region A-E probabilities: 94.4%, 5.6%,
0, 0, 0. (b) Region A-E: 63.8%, 36.2%, 0, 0, 01

increase in blood glucose levels three times (e.g., following
the intake of a glucose solution) and compare the resonance
frequency point obtained from the CGMM prototype with the
ground truth recorded by the CGM sensor. From these three
calibration measurements, we calculate the average value of
K, which is then used to convert resonance frequency shift pa-
rameters into changes in blood glucose levels in the CGMM.

Figure 17 and Figure 18 display an exemplar collected data
for the participant 1. We find that both CGMM prototypes
performed well in real-world human subject testing scenarios.
From the Clarke Error Grid analysis (see Figure 19), we find
that 88.3% and 63.8% of the measurements from prototype 1
and 2, respectively, fall within Region A, which is considered
accurate enough for making correct clinical decisions. Mean-
while, 11.7% and 36.2% of the measurements from Prototype
1 and 2 fall within Region B. Region B does not lead to inap-
propriate treatment. Collectively, 100% measurements lead
to appropriate treatement using both prototypes.

Results of the relative difference analysis of the human
subject experiments are shown in Figure 20. The prototype 1
with the LibreVNA provides the most accurate measurements,
with relative errors ranging from -5.02% (the first quartile)
to 6.93% (the third quartile), and RMSE is 9.65 mg/dL. The
black markers in Figure 20 indicate the singularity points,
which may be caused by factors such as device measurement
noise and significant movements of the participant’s arm. The
UWB radar module (prototype 2) operating in the frequency
band of 7.25-10.2 GHz, constrained by its limited sampling
points, also shows the satisfied accuracy, with relative errors
ranging from -13.76% (the first quartile) to 15.95% (the third
quartile), and RMSE is 20.54 mg/dL.

Timing tests on passive metasurfaces. We conduct timeli-
ness experiments on calibrated passive metasurfaces and the
K value, involving three participants (ID 1-3). Specifically,
we use metasurfaces calibrated for each participant three
months earlier and test their performance. The experimen-
tal results are shown in Figure 21. We compare the accuracy
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Figure 20: Relative difference bar plots of predicted glucose levels by CGMM
compared to the ground truth collected by the CGM sensors. P1-10 refer to
Participants 1-10
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Figure 21: Relative difference bar plots
with the calibrated passive metasur-
faces and K values 3 months ago. V
and U mean VNA and UWB

of the current experiments with the experiments conducted
three months earlier (see P1-3 in Figure 20). Prototype 1,
equipped with the LibreVNA, provides glucose monitoring
performance with relative errors ranging from -6.96% (the
first quartile) to 7.68% (the third quartile), and an RMSE of
11.82 mg/dL. While, prototype 2, equipped with the UWB
radar device, demonstrates performance with relative errors
ranging from -17.58% (the first quartile) to 21.39% (the third
quartile), and an RMSE of 324.90 mg/dL. The experimen-
tal results show that metasurfaces and K values calibrated
three months ago can still detect blood glucose level changes,
though with slightly reduced accuracy.

6 DISCUSSION

Fusion of relevant sensors for compensation. The experi-
ment results of the CGMM on pork are superior to those from
human experiments. This discrepancy may be attributed to
slight arm movements during the experiments, which affected
the RF cable. Changes in the RF cable can lead to variations
in its effective capacitance and other parameters, resulting in
errors in the CGMM system’s resonance point measurements.
Additionally, the humidity and temperature of the human’s
tissues can cause slight variations in the permittivity changes
of skin, fat, and muscle, and cause the singularity point in Fig-
ure 20. In future work, we will address these influences by
integrating data from relevant sensors.

Effect of other components on the tissue permittivity. The
permittivity of blood is easily affected by factors such as blood
glucose and lipids [49], making it unreliable for accurately
estimating blood glucose levels. Glucose molecules, being
small, can achieve equilibrium between blood and tissue fluid
through osmotic balance when glucose levels change [20].
The permittivity of tissue fluid may also be affected by vari-
ations in other small-molecule components. However, the
changes of other components are much smaller: glucose con-
centration may change from 30 mg/dL to 400 mg/dL for dia-
betic patients. While sodium and chloride levels, despite be-
ing present in significant amounts, change by a much smaller
amount: sodium changes from 310 mg/dL to 333 mg/dL, and
chloride changes from 337 mg/dL to 372 mg/dL [40]. Other

minerals have even smaller concentrations in blood, such as
magnesium (1.8-3.4 mg/dL), calcium (8.5-10.5 mg/dL), and
potassium (13.6-21.4 mg/dL). Thus, we assume changes in
other components have negligible impact on blood permittiv-
ity, following prior studies [9, 65, 67].
Absolute glucose level and error of CGMM. Non-invasive
measurement methods require an initial accurate calibration
of absolute blood glucose levels. A common approach in-
volves using invasive techniques to measure a user’s fast-
ing blood glucose for calibration, followed by utilizing non-
invasive methods for ongoing monitoring of glucose concen-
tration changes. The non-invasive measurement technique we
propose may not achieve the same high level of accuracy as
invasive methods. However, the ability to accurately detect
abnormal events such as hypoglycemia and hyperglycemia is
still of significant importance for individuals with diabetes.

7 CONCLUSION
We present CGMM, a system for non-invasive glucose sens-
ing in wearable devices through the innovative integration of
metasurfaces. We validate the system’s performance through
human subject experiments, demonstrating its effectiveness.
Building on these promising results, we plan to conduct more
extensive user studies and refine our system, paving the way
for its deployment in daily applications.
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APPENDIX
A PARAMETERS OF THE COLE-COLE

MODEL
Conc. (mg/dL) 0 100 200 300 400 500

𝜖𝑆 79.15 79.06 78.92 78.86 78.82 78.78
𝜖∞ 9.99 10.03 10.14 10.48 10.96 11.27

𝜏 (1𝑒−12 ) 9.26 9.24 9.22 9.28 9.36 9.42

Table 1: Parameters of the single pole Cole-Cole model
for five different concentrations of glucose solutions

Conc. (mg/dL) 0 100 200 300 400 500
𝜖∞ 2.32 2.31 2.29 2.72 2.98 2.97

𝜎𝐷𝐶 (𝑆/𝑚) 0.0222 0.018 0.010 0.010 0.010 0.010
𝜏1 (1𝑒−12 ) 7.87 7.07 5.76 7.48 10.56 14.39

𝜖𝑠,1 − 𝜖∞,1 (Δ1 ) 2.14 2.1 2.0 1.5 1.3 1.5
𝛼1 0.002 0.001 0.001 0.047 0.154 0.273

𝜏2 (1𝑒−8 ) 1.93 1.85 1.34 1.81 1.06 1.30
𝜖𝑠,2 − 𝜖∞,2 (Δ2 ) 19.7 26 31 40 31 45

𝛼2 0.259 0.22 0.163 0.157 0.087 0.001

Table 2: Parameters of the Cole-Cole models for five dif-
ferent glucose concentrations of fat tissue

Conc. (mg/dL) 0 100 200 300 400 500
𝜖∞ 4.32 4.24 4.24 5.00 4.83 4.62

𝜎𝐷𝐶 (𝑆/𝑚) 0.354 0.362 0.310 0.376 0.397 0.390
𝜏1 (1𝑒−12 ) 1.040 1.034 1.034 1.056 1.061 1.061

𝜖𝑠,1 − 𝜖∞,1 (Δ1 ) 59.3 59.4 59.3 58.4 58.8 59.2
𝛼1 0.240 0.243 0.246 0.242 0.248 0.252

𝜏2 (1𝑒−7 ) 9.10 8.98 7.96 9.28 9.37 9.20
𝜖𝑠,2 − 𝜖∞,2 (Δ2 ) 23500 22977 25000 22146 21982 22214

𝛼2 0.093 0.092 0.080 0.097 0.091 0.088

Table 3: Parameters of the Cole-Cole models for five dif-
ferent glucose concentrations of muscle tissue
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